952 resultados para GENE DELIVERY
Resumo:
Chitosan has shown its potential as a non-viral gene carrier and an adsorption enhancer for subsequent drug delivery to cells. These results showed that chitosan acted as a membrane perturbant. However, there is currently a lack of direct experimental evidence of this membrane perturbance effect, especially for chitosans with low molecular weight (LMW). In this report, the interaction between a lipid (didodecyl dimethylammonium bromide; DDAB) bilayer and chitosan with molecular weight (MW) of 4200 Da was studied with cyclic voltammetry (CV), electrochemical impedance spectroscopy and surface plasmon resonance (SPR). A lipid bilayer was formed by-fusion of oppositely charged lipid vesicles on a mercaptopropionic acid (MPA)-modified gold surface to mimic a cell membrane. The results showed that the LMW chitosan could disrupt the lipid bilayer, and the effect seemed,to be in a concentration-dependent manner.
Resumo:
Cancer represents a leading of cause of death in the developed world, inflicting tremendous suffering and plundering billions from health budgets. The traditional treatment approaches of surgery, radiotherapy and chemotherapy have achieved little in terms of cure for this deadly disease. Instead, life is prolonged for many, with dubious quality of life, only for disease to reappear with the inevitable fatal outcome. “Blue sky” thinking is required to tackle this disease and improve outcomes. The realisation and acceptance of the intrinsic role of the immune system in cancer pathogenesis, pathophysiology and treatment represented such a “blue sky” thought. Moreover, the embracement of immunotherapy, the concept of targeting immune cells rather than the tumour cells themselves, represents a paradigm shift in the approach to cancer therapy. The harnessing of immunotherapy demands radical and innovative therapeutic endeavours – endeavours such as gene and cell therapies and RNA interference, which two decades ago existed as mere concepts. This thesis straddles the frontiers of fundamental tumour immunobiology and novel therapeutic discovery, design and delivery. The work undertaken focused on two distinct immune cell populations known to undermine the immune response to cancer – suppressive T cells and macrophages. Novel RNAi mediators were designed, validated and incorporated into clinically relevant gene therapy vectors – involving a traditional lentiviral vector approach, and a novel bacterial vector strategy. Chapter 2 deals with the design of novel RNAi mediators against FOXP3 – a crucial regulator of the immunosuppressive regulatory T cell population. Two mediators were tested and validated. The superior mediator was taken forward as part of work in chapter 3. Chapter 3 deals with transposing the RNA sequence from chapter 2 into a DNA-based construct and subsequent incorporation into a lentiviral-based vector system. The lentiviral vector was shown to mediate gene delivery in vitro and functional RNAi was achieved against FOXP3. Proof of gene delivery was further confirmed in vivo in tumour-bearing animals. Chapter 4 focuses on a different immune cell population – tumour-associated macrophages. Non-invasive bacteria were explored as a specific means of delivering gene therapy to this phagocytic cell type. Proof of delivery was shown in vitro and in vivo. Moreover, in vivo delivery of a gene by this method achieved the desired immune response in terms of cytokine profile. Overall, the data presented here advance exploration within the field of cancer immunotherapy, introduce novel delivery and therapeutic strategies, and demonstrate pre-clinically the potential for such novel anti-cancer therapies.
Resumo:
Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (∼10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.
Resumo:
The synthesis of nanophase hydroxyapatite (nHA) is of importance in the field of biomaterials and bone tissue engineering. The bioactive and osteoconductive properties of nHA are of much benefit to a wide range of biomedical applications such as producing bone tissue engineered constructs, coating medical implants, or as a carrier for plasmid DNA in gene delivery. This study aimed to develop a novel low-temperature dispersant-aided precipitation reaction to produce nHA particles (
Resumo:
In the past decades, numerous types of nanomedicines have been developed for the efficient and safe delivery of nucleic acid-based drugs for cancer therapy. Given that the destination sites for nucleic acid-based drugs are inside cancer cells, delivery systems need to be both targeted and shielded in order to overcome the extracellular and intracellular barriers. One of the major obstacles that has hindered the translation of nanotechnology-based gene-delivery systems into the clinic has been the complexity of the design and assembly processes, resulting in non-uniform nanocarriers with unpredictable surface properties and efficiencies. Consequently, no product has reached the clinic yet. In order to address this shortcoming, a multifunctional targeted biopolymer is genetically engineered in one step, eliminating the need for multiple chemical conjugations. Then, by systematic modulation of the ratios of the targeted recombinant vector to PEGylated peptides of different sizes, a library of targeted-shielded viral-mimetic nanoparticles (VMNs) with diverse surface properties are assembled. Through the use of physicochemical and biological assays, targeted-shielded VMNs with remarkably high transfection efficiencies (>95%) are screened. In addition, the batch-to-batch variability of the assembled targeted-shielded VMNs in terms of uniformity and efficiency is examined and, in both cases, the coefficient of variation is calculated to be below 20%, indicating a highly reproducible and uniform system. These results provide design parameters for engineering uniform, targeted-shielded VMNs with very high cell transfection rates that exhibit the important characteristics for in vivo translation. These design parameters and principles could be used to tailor-make and assemble targeted-shielded VMNs that could deliver any nucleic acid payload to any mammalian cell type.
Resumo:
Gene therapy has the potential to provide safe and targeted therapies for a variety of diseases. A range of intracellular gene delivery vehicles have been proposed for this purpose. Non-viral vectors are a particularly attractive option and among them cationic peptides have emerged as promising candidates. For the pharmaceutical formulation and application to clinical studies it is necessary to quantify the amount of pDNA condensed with the delivery system. There is a severe deficiency in this area, thus far no methods have been reported specifically for pDNA condensed with cationic peptide to form nanoparticles. The current study seeks to address this and describes the evaluation of a range of disruption agents to extract DNA from nanoparticles formed by condensation with cationic fusogenic peptides RALA and KALA. Only proteinase K exhibited efficient and reproducible results and compatibility with the PicoGreen reagent based quantification assay. Thus we report for the first time a simple and reliable method that can quantify the pDNA content in pDNA cationic peptide nanoparticles.
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
It is hoped that the use of gene transfer technology to treat both monogenetic and acquired diseases may soon become a common therapy option in medicine. For gene therapy to achieve this objective, any gene delivery method will have to meet several criteria, including ease of manufacturing, efficient gene transfer to target tissue, long-term gene expression to alleviate the disease, and most importantly safety in patients. Viral vectors are an attractive choice for use in gene therapy protocols due to their relative efficiency in gene delivery. Since there is inherent risk in using viruses, investigators in the gene therapy community have devoted extensive efforts toward reengineering viral vectors for enhance safety. Here we review the approaches and technologies that are being evaluated for the use of recombinant vectors based upon adeno-associated virus (AAV) in the treatment of a variety of human diseases. AAV is currently the only known human DNA virus that is non-pathogenic and AAV-based vectors are classified as Risk Group 1 agents for all laboratory and animal studies carried out in the US. Although its apparent safety in natural infection and animals appears well documented, we examine the accumulated knowledge on the biology and vectorology of AAV, lessons learned from gene therapy clinical trials, and how this information is impacting current vector design and manufacturing with an overall emphasis on biosafety.
Resumo:
Human adenoviruses (Ads), members of the family adenoviridae, are medium-sized DNA viruses which have been used as valuable research tools for the study of RNA processing, oncogenic transformation, and for the development of viral vectors for use in gene delivery and immunization technology. The left 12% of the linear Ad genollle codes for products which are necessary for the efficient replication of the virus, as well as being responsible for the forlllation of tumors in animallllodels. The establishlllent of the 293 cell line, by immortalization of human embryonic kidney cells with th~ E1 region of Ad type S (AdS), has facilitated extensive manipulation of the Ads and the development of recombinant Ad vectors. The study of bovine adenoviruses (BAVs), which cause mild respiratory and gastrointestinal infections in cattle has, on the other hand, been limited primarily to that of infectivity, immunology and clinicallllanifestations. As a result, any potential as gene delivery vehicles has not yet been realized. Continued research into the molecular biolo~gy of BAVs and the development of recolllbinant vectors would benefit from the development of a cell line analogous to that of the 293 cells. In an attelllpt to establish such a cell line, the recombinant plaslllid pKC-neo was constructed, containing the left 0-19.7% of the BAV type 3 (BAV3) genome, and the selectable marker for resistance to the aminoglycoside G418, a neomycin derivative. The plasmid construct was then used to transfect both the Madin-Darby bovine kidney (MDBK) -iicell line and primary bovine lung cells, after which G418-resistant foci were selected for analysis. Two cell lines, E61 (MDBK) and E24 (primary lung), were subsequently selected and analysed for DNA content, revealing the presence of the pKC-neo sequences in their respective genomes. In addition, BAV3 RNA transcripts were detected in the E61 cells. Although the presence of E1 products has yet to be confirmed in both cell lines, the E24 cells exhibit a phenotype characteristic of partial transformation by E1. The apparent immortalization of the primary lung cells will permit exploitation of their ability to take up exogenous DNA at high efficiency.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
L’adénovirus a été étudié dans l’optique de développer de nouveaux traitements pour différentes maladies. Les vecteurs adénoviraux (AdV) sont des outils intéressants du fait qu’ils peuvent être produits en grandes quantités (1X1012 particules par millilitre) et de par leur capacité à infecter des cellules quiescentes ou en division rapide. Les AdVs ont subi bon nombre de modifications pour leur permettre de traiter des cellules tumorales ou pour transporter des séquences génétiques exogènes essentielles pour le traitement de maladies monogéniques. Toutefois, les faibles niveaux d’expression du récepteur primaire de l’adénovirus, le CAR (récepteur à l’adénovirus et au virus coxsackie), réduit grandement l’efficacité de transduction dans plusieurs tumeurs. De plus, certains tissus normaux comme les muscles n’expriment que très peu de CAR, rendant l’utilisation des AdVs moins significative. Pour pallier à cette limitation, plusieurs modifications ont été générées sur les capsides virales. L’objectif de ces modifications était d’augmenter l’affinité des AdVs pour des récepteurs cellulaires spécifiques surexprimés dans les tumeurs et qui seraient exempts dans les tissus sains avoisinant. On peut mentionner dans les approches étudiées: l’utilisation de ligands bispécifiques, l’incorporation de peptides dans différentes régions de la fibre ou la substitution par une fibre de sérotypes différents. Notre hypothèse était que les domaines d’interaction complémentaire (K-Coil et ECoil) permettraient aux ligands de s’associer aux particules virales et d’altérer le tropisme de l’AdV. Pour ce faire, nous avons inclus un domaine d’interaction synthétique, le K-Coil,dans différentes régions de la fibre virale en plus de générer des mutations spécifiques pour abolir le tropisme naturel. Pour permettre la liaison avec les récepteurs d’intérêt dont l’EGF-R, l’IGF-IR et le CEA6, nous avons fusionné le domaine d’interaction complémentaire, le E-Coil, soit dans les ligands des récepteurs ciblés dont l’EGF et l’IGF-I, soit sur un anticorps à un seul domaine reconnaissant la protéine membranaire CEA6, l’AFAI. Suite à la construction des différents ligands de même que des différentes fibres virales modifiées, nous avons determiné tout d’abord que les différents ligands de même que les virus modifiés pouvaient être produits et que les différentes composantes pouvaient interagir ensemble. Les productions virales ont été optimisées par l’utilisation d’un nouveau protocole utilisant l’iodixanol. Ensuite, nous avons démontré que l’association des ligands avec le virus arborant une fibre modifiée pouvait entraîner une augmentation de transduction de 2 à 21 fois dans différentes lignées cellulaires. À cause de la difficulté des adénovirus à infecter les fibres musculaires occasionnée par l’absence du CAR, nous avons cherché à savoir si le changement de tropisme pourrait accroître l’infectivité des AdVs. Nous avons démontré que l’association avec le ligand bispécifique IGF-E5 permettait d’accroître la transduction autant dans les myoblastes que dans les myotubes de souris. Nous avons finalement réussi à démontrer que notre système pouvait induire une augmentation de 1,6 fois de la transduction suite à l’infection des muscles de souriceaux MDX. Ces résultats nous amènent à la conclusion que le système est fonctionnel et qu’il pourrait être évalué dans des AdVs encodant pour différents gènes thérapeutiques.
Resumo:
Polyethylenimine (PEI) is an efficient nonviral gene delivery vector because of its high buffering capacity and DNA condensation ability. In our study, the amino groups on the polymeric backbone were acylated using acetic or propionic anhydride to alter the protonation behaviour and the hydrophilic/hydrophobic balance of the polymer. The concentration of acylated primary amines was determined using trinitrobenzene sulphonic acid assay. Results showed that our modified polymers had lower buffering capacities in solutions compared to PEI. The polymers were complexed with plasmid encoding enhanced green fluorescent protein at three different ratios (1:1, 1:2 and 1:10 w/w DNA to polymer) to form polyplexes and their toxicities and transfection efficiencies were evaluated in HEK 293 cells. Acylation reduced the number of primary amines on the polymer and the surface charge, improving haemocompatibility and reducing cytotoxicity. The reduction in the concentration of amino groups helped to optimise DNA compaction and facilitated polyplex dissociation in the cell, which increased transfection efficiency of the modified polymers compared to the parent polymer. Polymers with buffering capacities greater than 50% and less than 80% relative to PEI, showed higher transfection efficiencies than PEI. The propionic anhydride modified polymers had appropriate interactions with DNA which provided both DNA compaction and polyplex dissociation. These systems interacted better with the cell membrane because of their slightly higher lipophilicity and formed polyplexes which were less cytotoxic than polyplexes of acetic anhydride modified polymers. Among the vectors tested, 1:0.3 mol/mol PEI:propionic anhydride in a 1:2 w/w DNA:polymer composition provided the best transfection system with improved transfection efficiency and reduced cytotoxicity.
Resumo:
Improved display of foreign protein moieties in combination with beneficial alteration of the viral surface properties should be of value for targeted and enhanced gene delivery. Here, we describe a vector based on Autographa californica multiple nucleopolyhedrovirus (AcMNPV) displaying synthetic IgG-bincling domains (ZZ) of protein A fused to the transmembrane anchor of vesicular stomatitis virus (VSV) G protein. This display vector was equipped with a GFP/EGFP expression cassette enabling fluorescent detection in both insect and mammalian cells. The virus construct displayed the biologically active fusion protein efficiently and showed increased binding capacity to IgG. As the display is carried out using a membrane anchor of foreign origin, gp64 is left intact for virus entry, which may increase gene expression in the transduced mammalian cells. In addition, the viral vector can be targeted to any desired cell type via binding of ZZ domains when an appropriate IgG antibody is available.
Resumo:
Cardiovascular disease represents a major clinical problem affecting a significant proportion of the world's population and remains the main cause of death in the UK. The majority of therapies currently available for the treatment of cardiovascular disease do not cure the problem but merely treat the symptoms. Furthermore, many cardioactive drugs have serious side effects and have narrow therapeutic windows that can limit their usefulness in the clinic. Thus, the development of more selective and highly effective therapeutic strategies that could cure specific cardiovascular diseases would be of enormous benefit both to the patient and to those countries where healthcare systems are responsible for an increasing number of patients. In this review, we discuss the evidence that suggests that targeting the cell cycle machinery in cardiovascular cells provides a novel strategy for the treatment of certain cardiovascular diseases. Those cell cycle molecules that are important for regulating terminal differentiation of cardiac myocytes and whether they can be targeted to reinitiate cell division and myocardial repair will be discussed as will the molecules that control vascular smooth muscle cell (VSMC) and endothelial cell proliferation in disorders such as atherosclerosis and restenosis. The main approaches currently used to target the cell cycle machinery in cardiovascular disease have employed gene therapy techniques. We will overview the different methods and routes of gene delivery to the cardiovascular system and describe possible future drug therapies for these disorders. Although the majority of the published data comes from animal studies, there are several instances where potential therapies have moved into the clinical setting with promising results.
Resumo:
The insect baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) enters many mammalian cell lines, prompting its application as a general eukaryotic gene delivery agent, but the basis of entry is poorly understood. For adherent mammalian cells we show that entry is favoured by low pH and increasing the available cell surface area through transient release from the substratum. Low pH also stimulated baculovirus entry into mammalian cells grown in suspension which, optimally, could reach 90% of the transduced population. The basic loop, residues 268-281, of the viral surface glycoprotein gp64 was required for entry and a tetra mutant with increasing basicity increased entry into a range of mammalian cells. The same mutant failed to plaque in Sf9 cells, instead showing individual cell entry and minimal cell to cell spread, consistent with an altered fusion phenotype. Viruses grown in different insect cells showed different mammalian cell entry efficiencies suggesting additional factors also govern entry.