992 resultados para GALAXIES: STAR FORMATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high res- olution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM’s main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude bet- ter than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) e↵ect, detecting approximately 106 clusters extending to large redshift, including a char- acterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ e↵ect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the di↵use CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during inflation and from gravitational lensing, as well as the ultimate search for primordial non-Gaussianity using CMB polarization, which is less contaminated by foregrounds on small scales than thetemperature anisotropies; (4) a search for distortions from a perfect blackbody spectrum, which include some nearly certain signals and others that are more speculative but more informative; and (5) a study of the role of the magnetic field in star formation and its inter- action with other components of the interstellar medium of our Galaxy. These are but a few of the highlights presented here along with a description of the proposed instrument.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a previous paper, we described the room temperature rapid, selective, reversible, and near quantitative Cu-activated nitroxide radical coupling (NRC) technique to prepare 3-arm polystyrene stars. In this work, we evaluated the Cu-activation mechanism, either conventional atom transfer or single electron transfer (SET), through kinetic simulations. Simulation data showed that one can describe the system by either activation mechanism. We also found through simulations that bimolecular radical termination, regardless of activation mechanism, was extremely low and could be considered negligible in an NRC reaction. Experiments were carried out to form 2- and 3-arm PSTY stars using two ligands, PMDETA and Me6TREN, in a range of solvent conditions by varying the ratio of DMSO to toluene, and over a wide temperature range. The rate of 2- or 3-arm star formation was governed by the choice of solvent and ligand. The combination of Me6TREN and toluene/DMSO showed a relatively temperature independent rate, and remarkably reached near quantitative yields for 2-arm star formation after only 1 min at 25 °C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interstellar clouds are not featureless, but show quite complex internal structures of filaments and clumps when observed with high enough resolution. These structures have been generated by 1) turbulent motions driven mainly by supernovae, 2) magnetic fields working on the ions and, through neutral-ion collisions, on neutral gas as well, and 3) self-gravity pulling a dense clump together to form a new star. The study of the cloud structure gives us information on the relative importance of each of these mechanisms, and helps us to gain a better understanding of the details of the star formation process. Interstellar dust is often used as a tracer for the interstellar gas which forms the bulk of the interstellar matter. Some of the methods that are used to derive the column density are summarized in this thesis. A new method, which uses the scattered light to map the column density in large fields with high spatial resolution, is introduced. This thesis also takes a look at the grain alignment with respect to the magnetic fields. The aligned grains give rise to the polarization of starlight and dust emission, thus revealing the magnetic field. The alignment mechanisms have been debated for the last half century. The strongest candidate at present is the radiative torques mechanism. In the first four papers included in this thesis, the scattered light method of column density estimation is formulated, tested in simulations, and finally used to obtain a column density map from observations. They demonstrate that the scattered light method is a very useful and reliable tool in column density estimation, and is able to provide higher resolution than the near-infrared color excess method. These two methods are complementary. The derived column density maps are also used to gain information on the dust emissivity within the observed cloud. The two final papers present simulations of polarized thermal dust emission assuming that the alignment happens by the radiative torques mechanism. We show that the radiative torques can explain the observed decline of the polarization degree towards dense cores. Furthermore, the results indicate that the dense cores themselves might not contribute significantly to the polarized signal, and hence one needs to be careful when interpreting the observations and deriving the magnetic field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a study of the kinematics of the cometary globules in the Gum Nebula using the J = 1 yields 0 transition line of (CO-12)O. A morphological center for the system with which 60 percent of the globules are associated is identified. It is shown that the observed radial velocities of the heads of the globules are consistent with an expansion of the system. Systematic velocity gradients are present along some of the tails. The estimated expansion age and the tail stretching age are both about a few million years, suggesting a common origin for the expansion and the formation of the tails. The presence of young stars of similar ages in some of the globules points to star formation triggered by the same cause. Possible scenarios are briefly discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use the HΙ scale height data along with the HΙ rotation curve as constraints to probe the shape and density profile of the dark matter halos of M31 (Andromeda) and the superthin, low surface brightness (LSB) galaxy UGC 07321. We model the galaxy as a two component system of gravitationally-coupled stars and gas subjected to the force field of a dark matter halo. For M31, we get a flattened halo which is required to match the outer galactic HΙ scale height data, with our best-fit axis ratio (0.4) lying at the most oblate end of the distributions obtained from cosmological simulations. For UGC 07321, our best-fit halo core radius is only slightly larger than the stellar disc scale length, indicating that the halo is important even at small radii in this LSB galaxy. The high value of the gas velocity dispersion required to match the scale height data can explain the low star-formation rate of this galaxy.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using hydrodynamical simulations, we show for the first time that an episode of star formation in the centre of the Milky Way, with a star formation rate (SFR) similar to 0.5 M-circle dot yr(-1) for similar to 30 Myr, can produce bubbles that resemble the Fermi bubbles (FBs), when viewed from the solar position. The morphology, extent and multiwavelength observations of FBs, especially X-rays, constrain various physical parameters such as SFR, age, and the circumgalactic medium (CGM) density. We show that the interaction of the CGM with the Galactic wind driven by star formation in the central region can explain the observed surface brightness and morphological features of X-rays associated with the FBs. Furthermore, assuming that cosmic ray electrons are accelerated in situ by shocks and/or turbulence, the brightness and morphology of gamma-ray emission and the microwave haze can be explained. The kinematics of the cold and warm clumps in our model also matches with recent observations of absorption lines through the bubbles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.

Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.

However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.

Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have made self-consistent models of the density and temperature profiles of the gas and dust surrounding embedded luminous objects using a detailed radiative transfer model together with observations of the spectral energy distribution of hot molecular cores. Using these profiles we have investigated the hot core chemistry which results when grain mantles are evaporated, taking into account the different binding energies of the mantle molecules, as well a model in which we assume that all molecules are embedded in water ice and have a common binding energy. We find that most of the resulting column densities are consistent with those observed toward the hot core G34.3+0.15 at a time around 10^4 years after central luminous star formation. We have also investigated the dependence of the chemical structure on the density profile which suggests an observational possibility of constraining density profiles from determination of the source sizes of line emission from desorbed molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution observations of five OB-type main-sequence stars in the Large Magellanic Cloud (LMC) have been obtained with the UCL echelle spectrograph on the 3.9-m Anglo-Australian Telescope. These spectra have been analysed using LTE model- atmosphere techniques, to derive stellar atmospheric parameters and chemical compositions. As these stars are located within the hydrogen burning main-sequence band, their surface abundances should reflect those of the present-day interstellar medium. Detailed line-by-line differential analyses have been undertaken relative to Galactic comparison stars. We conclude that there exists a general metal deficiency of - 0.31 +/- 0.04 dex within the LMC, and find no significant abundance variations between cluster and field stars. There is also tentative evidence to suggest a lower oxygen to iron abundance ratio, and an over-deficiency of magnesium relative to the other alpha-elements. These are discussed in terms of previous abundance analyses and models of discontinuous (or bursting) star formation within the LMC. Finally, there is some evidence to suggest a greater chemical enrichment of material within the H. region LH104.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analysis is presented of VLT-FLAMES spectroscopy for three Galactic clusters, NGC3293, NGC4755 and NGC6611. Non-LTE model atmosphere calculations have been used to estimate effective temperatures (from either the helium spectrum or the silicon ionization equilibrium) and gravities (from the hydrogen spectrum). Projected rotational velocities have been deduced from the helium spectrum (for fast and moderate rotators) or the metal line spectrum (for slow rotators). The origin of the low gravity estimates for apparently near main sequence objects is discussed and is related to the stellar rotational velocity. The atmospheric parameters have been used to estimate cluster distances (which are generally in good agreement with previous determinations) and these have been used to estimate stellar luminosities and evolutionary masses. The observed Hertzsprung-Russell diagrams are compared with theoretical predictions and some discrepancies including differences in the main sequence luminosities are discussed. Cluster ages have been deduced and evidence for non-coeval star formation is found for all three of the clusters. Projected rotational velocities for targets in the older clusters, NGC3293 and NGC4755, have been found to be systematically larger than those for the field, confirming recent results in other similar age clusters. The distribution of projected rotational velocities are consistent with a Gaussian distribution of intrinsic rotational velocities. For the relatively unevolved targets in the older clusters, NGC3293 and NGC4755, the peak of the velocity distribution would be 250 km s(-1) with a full-width-half-maximum of approximately 180 km s(-1). For NGC6611, the sample size is relatively small but implies a lower mean rotational velocity. This may be evidence for the spin-down effect due to angular momentum loss through stellar winds, although our results are consistent with those found for very young high mass stars. For all three clusters we deduce present day mass functions with Gamma-values in the range of -1.5 to -1.8, which are similar to other young stellar clusters in the Milky Way.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims.We use observations and models of molecular D/H ratios to probe the physical conditions and chemical history of the gas and to differentiate between gas-phase and grain-surface chemical processing in star forming regions. Methods: As a follow up to previous observations of HDCO/H2CO and DCN/HCN ratios in a selection of low-mass protostellar cores, we have measured D2CO/H2CO and N2D^+/N2H+ ratios in these same sources. For comparison, we have also measured N2D^+/N2H+ ratios towards several starless cores and have searched for N2D+ and deuterated formaldehyde towards hot molecular cores (HMCs) associated with high mass star formation. We compare our results with predictions from detailed chemical models, and to other observations made in these sources. Results: Towards the starless cores and low-mass protostellar sources we have found very high N2D+ fractionation, which suggests that the bulk of the gas in these regions is cold and heavily depleted. The non-detections of N2D+ in the HMCs indicate higher temperatures. We did detect HDCO towards two of the HMCs, with abundances 1-3% of H2CO. These are the first detections of deuterated formaldehyde in high mass sources since Turner (1990) measured HDCO/H2CO and D2CO/H2CO towards the Orion Compact Ridge. Figures 1-5 are only available in electronic form at http://www.aanda.org

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims. We aim to investigate the chemistry and gas phase abundance of HNCO and the variation of the HNCO/CS abundance ratio as a diagnostic of the physics and chemistry in regions of massive star formation. Methods. A numerical-chemical model has been developed which self-consistently follows the chemical evolution of a hot core. The model comprises of two distinct stages. The first stage follows the isothermal, modified free-fall collapse of a molecular dark cloud. This is immediately followed by an increase in temperature which represents the switch on of a central massive star and the subsequent evolution of the chemistry in a hot, dense gas cloud (the hot core). During the collapse phase, gas species are allowed to accrete on to grain surfaces where they can participate in further reactions. During the hot core phase surface species thermally desorb back in to the ambient gas and further chemical evolution takes place. For comparison, the chemical network was also used to model a simple dark cloud and photodissociation regions. Results. Our investigation reveals that HNCO is inefficiently formed when only gas-phase formation pathways are considered in the chemical network with reaction rates consistent with existing laboratory data. This is particularly true at low temperatures but also in regions with temperatures up to ~200 K. Using currently measured gas phase reaction rates, obtaining the observed HNCO abundances requires its formation on grain surfaces – similar to other “hot core” species such as CH3OH. However our model shows that the gas phase HNCO in hot cores is not a simple direct product of the evaporation of grain mantles. We also show that the HNCO/CS abundance ratio varies as a function of time in hot cores and can match the range of values observed. This ratio is not unambiguously related to the ambient UV field as been suggested – our results are inconsistent with the hypothesis of Martín et al. (2008, ApJ, 678, 245). In addition, our results show that this ratio is extremely sensitive to the initial sulphur abundance. We find that the ratio grows monotonically with time with an absolute value which scales approximately linearly with the S abundance at early times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the detection of microwave emission lines from the hydrocarbon anion C6H- and its parent neutral C6H in the star-forming region L1251A (in Cepheus), and the pre-stellar core L1512 (in Auriga). The carbon-chain-bearing species C4H, HC3N, HC5N, HC7N and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long- chain polyynes and cyanopolyynes (with more than 5 carbon atoms) in the Cepheus Flare star- forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, highlighting a wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines, and are found to be 6.2 K for L1251A and 8.7 K for L1512. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes towards the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.