956 resultados para GALACTIC FSCMA STARS
Resumo:
Stars Keep it simple animation. HTML5 compliat. No IOS or android player
Resumo:
Bajo la forma de preguntas y respuestas trata de despertar la curiosidad por la astronomía haciendo hincapié en las características e interrelaciones de las estrellas y planetas en nuestra galaxia. Exploran diversos aspectos de la astronomía, incluyendo el sistema solar, estrellas, planetas, lunas, asteroides y cometas. Recomendado para niños de ocho a doce años.
Resumo:
Describe los orígenes y la composición de las estrellas y las constelaciones contestando a preguntas como si hay constelaciones de ochenta y ocho estrellas, si nuestro sol brillará otros cinco billones de años o si las estrellas gigantes se convertirán, cuando mueran, en agujeros negros. Tiene glosario, bibliografía y direcciones de internet.
Resumo:
Cincuenta y dos cartas que ponen de manifiesto todo sobre el estudio de las estrellas. Paso a paso enseña cómo elegir estrellas mirando los equipos, identificar las constelaciones, y grabar lo visto usando astrofotografía.
Resumo:
Se describe la experiencia llevada a cabo con alumnos de primero de ESO en la asignatura de Inglés y que consistía en la búsqueda de un personaje de su interés en la página web: www.biography.com y en analizar su biografía a través de diversas actividades utilizando el idioma inglés. Los objetivos del trabajo son: desarrollar la capacidad lectora de los alumnos en inglés aún cuado no entiendan todo, leer para obtener la información específica, aprender a intuir el significado de palabras desconocidas por el contexto, practicar el vocabulario y las estructuras estudiadas, conseguir que los alumnos adquieran confianza a la hora de enfrentarse a páginas web en inglés y capacitar a los alumnos para que realicen búsquedas en Internet de material en inglés.
Resumo:
This CEPS Special Report gives an overview of China’s perceptions of the EU and the protection of Chinese investments in Europe since the outbreak of the European sovereign debt crisis, especially since the more concrete talks in late 2011 on possible financial support from China. Although the top leadership of the communist party of China (CPC) changed in its recent handover, the perceptions described in this paper are likely to remain the same, just as the main tenets of China’s foreign policy are unlikely to change in the near future. The report argues that while the EU’s image has suffered greatly from the sovereign debt crisis and the way it has been handled, there is room to improve China’s view of Europe and for the EU to maintain a relatively strong negotiation position towards China.
Resumo:
Galactic cosmic ray (GCR) changes have been suggested to affect weather and climate, and new evidence is presented here directly linking GCRs with clouds. Clouds increase the diffuse solar radiation, measured continuously at UK surface meteorological sites since 1947. The ratio of diffuse to total solar radiation-the diffuse fraction, (DF)-is used to infer cloud, and is compared with the daily mean neutron count rate measured at Climax; Colorado from 1951-2000, which provides a globally representative indicator of cosmic rays. Across the UK, oil days of high cosmic ray flux (above 3600 X 10(2) neutron counts h(-1), which occur 87% of the time on average) compared with low cosmic ray flux, (i) the chance of an overcast day increases by (19 +/- 4)%; and (ii) the diffuse fraction increases by (2 +/- 0.3)%. During sudden transient reductions in cosmic rays (e.g. Forbush events), simultaneous decreases occur in the diffuse fraction. The diffuse radiation changes are; therefore; unambiguously due to cosmic rays. Although the statistically significant nonlinear cosmic ray effect is small, it will have a considerably larger aggregate effect on longer timescale (e.g. centennial) climate variations when day-to-day variability averages out.
Resumo:
Galactic cosmic rays (GCRs) are extremely difficult to shield against and pose one of the most severe long-term hazards for human exploration of space. The recent solar minimum between solar cycles 23 and 24 shows a prolonged period of reduced solar activity and low interplanetary magnetic field strengths. As a result, the modulation of GCRs is very weak, and the fluxes of GCRs are near their highest levels in the last 25 years in the fall of 2009. Here we explore the dose rates of GCRs in the current prolonged solar minimum and make predictions for the Lunar Reconnaissance Orbiter (LRO) Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which is now measuring GCRs in the lunar environment. Our results confirm the weak modulation of GCRs leading to the largest dose rates seen in the last 25 years over a prolonged period of little solar activity.
Resumo:
Perceptual multimedia quality is of paramount importance to the continued take-up and proliferation of multimedia applications: users will not use and pay for applications if they are perceived to be of low quality. Whilst traditionally distributed multimedia quality has been characterised by Quality of Service (QoS) parameters, these neglect the user perspective of the issue of quality. In order to redress this shortcoming, we characterise the user multimedia perspective using the Quality of Perception (QoP) metric, which encompasses not only a user’s satisfaction with the quality of a multimedia presentation, but also his/her ability to analyse, synthesise and assimilate informational content of multimedia. In recognition of the fact that monitoring eye movements offers insights into visual perception, as well as the associated attention mechanisms and cognitive processes, this paper reports on the results of a study investigating the impact of differing multimedia presentation frame rates on user QoP and eye path data. Our results show that provision of higher frame rates, usually assumed to provide better multimedia presentation quality, do not significantly impact upon the median coordinate value of eye path data. Moreover, higher frame rates do not significantly increase level of participant information assimilation, although they do significantly improve overall user enjoyment and quality perception of the multimedia content being shown.
Resumo:
Galactic cosmic ray flux at Earth is modulated by the heliospheric magnetic field. Heliospheric modulation potential, Φ, during grand solar minima is investigated using an open solar flux (OSF) model with OSF source based on sunspot number, R, and OSF loss on heliospheric current sheet inclination. Changing dominance between source and loss means Φ varies in- (anti-) phase with R during strong (weak) cycles, in agreement with Φ estimates from ice core records of 10Be concentration, which are in-phase during most of the last 300 years, but anti-phase during the Maunder Minimum. Model results suggest “flat” OSF cycles, such as solar cycle 20 result from OSF source and loss terms temporarily balancing throughout the cycle. Thus even if solar activity continues to decline steadily, the long-term drop in OSF through SC21 to SC23 may plateau during SC24, though reemerge in SC25 with the inverted phase relation.
Resumo:
Galactic Cosmic Rays are one of the major sources of ion production in the troposphere and stratosphere. Recent studies have shown that ions form electrically charged clusters which may grow to become cloud droplets. Aerosol particles charge by the attachment of ions and electrons. The collision efficiency between a particle and a water droplet increases, if the particle is electrically charged, and thus aerosol-cloud interactions can be enhanced. Because these microphysical processes may change radiative properties of cloud and impact Earth's climate it is important to evaluate these processes' quantitative effects. Five different models developed independently have been coupled to investigate this. The first model estimates cloud height from dew point temperature and the temperature profile. The second model simulates the cloud droplet growth from aerosol particles using the cloud parcel concept. In the third model, the scavenging rate of the aerosol particles is calculated using the collision efficiency between charged particles and droplets. The fourth model calculates electric field and charge distribution on water droplets and aerosols within cloud. The fifth model simulates the global electric circuit (GEC), which computes the conductivity and ionic concentration in the atmosphere in altitude range 0–45 km. The first four models are initially coupled to calculate the height of cloud, boundary condition of cloud, followed by growth of droplets, charge distribution calculation on aerosols and cloud droplets and finally scavenging. These models are incorporated with the GEC model. The simulations are verified with experimental data of charged aerosol for various altitudes. Our calculations showed an effect of aerosol charging on the CCN concentration within the cloud, due to charging of aerosols increase the scavenging of particles in the size range 0.1 µm to 1 µm.
Resumo:
Galactic cosmic rays (GCRs) are modulated by the heliospheric magnetic field (HMF) both over decadal time scales (due to long-term, global HMF variations), and over time scales of a few hours (associated with solar wind structures such as coronal mass ejections or the heliospheric current sheet, HCS). Due to the close association between the HCS, the streamer belt, and the band of slow solar wind, HCS crossings are often associated with corotating interaction regions where fast solar wind catches up and compresses slow solar wind ahead of it. However, not all HCS crossings are associated with strong compressions. In this study we categorize HCS crossings in two ways: Firstly, using the change in magnetic polarity, as either away-to-toward (AT) or toward-to-away (TA) magnetic field directions relative to the Sun and, secondly, using the strength of the associated solar wind compression, determined from the observed plasma density enhancement. For each category, we use superposed epoch analyses to show differences in both solar wind parameters and GCR flux inferred from neutron monitors. For strong-compression HCS crossings, we observe a peak in neutron counts preceding the HCS crossing, followed by a large drop after the crossing, attributable to the so-called ‘snow-plough’ effect. For weak-compression HCS crossings, where magnetic field polarity effects are more readily observable, we instead observe that the neutron counts have a tendency to peak in the away magnetic field sector. By splitting the data by the dominant polarity at each solar polar region, we find that the increase in GCR flux prior to the HCS crossing is primarily from strong compressions in cycles with negative north polar fields due to GCR drift effects. Finally, we report on unexpected differences in GCR behavior between TA weak compressions during opposing polarity cycles.