899 resultados para Fuzzy set


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Presente dissertação apresenta uma aplicação de Inteligência Computacional na área de Geotecnia, com a utilização da Técnica de Neuro-Fuzzy para indicar a suscetibilidade de escorregamento de taludes no município do Rio de Janeiro, a partir de inspeção visual. Neste trabalho, a suscetibilidade corresponde à possibilidade de ocorrência de escorregamento sem considerar os danos relacionados ao evento. Adotou-se como variável de saída a Previsão de Escorregamento (PE) com três adjetivos que correspondem a Suscetibilidades Alta, Média e Baixa. A metodologia utilizada consistiu em, inicialmente, montar um banco de dados com informações preliminares de análise de estabilidade, com a indicação dos condicionantes de escorregamento relacionados à geomorfologia, pluviosidade, capacidade de drenagem, vegetação e ocupação com seus respectivos graus de suscetibilidades de escorregamento obtidos em um conjunto de Laudos de Vistoria da Geo Rio. O banco de dados foi aplicado em um algoritmo de Neuro-Fuzzy. Diversos testes foram realizados com as alterações dos parâmetros do modelo Neuro-Fuzzy para uma combinação de fatores condicionantes de escorregamento e refinamento do banco de dados. Os testes apresentaram diminuição do erro fornecido pelo programa com o aumento de tipos de condicionantes utilizados no treinamento, o que permite inferir que o escorregamento ocorre por uma complexa relação entre diversos fatores condicionantes. O banco de dados utilizado nos testes apresenta descontinuidades nas relações entre os diversos condicionantes, ou seja, para uma mesma faixa de valores de Altura do talude, não é possível obter uma relação para todas as faixas de outro condicionante e, até mesmo, para todas as faixas da Previsão de Escorregamento. As PEs obtidas na validação do modelo tiveram seus valores próximos aos desejados somente nos conjuntos de variáveis utilizadas para o treinamento. O modelo não foi capaz de apresentar valores de suscetibilidades dentro da faixa de valores utilizados no treinamento para combinação de variáveis com pequenos ruídos, o que indica a necessidade de ampliação do banco de dados tanto quantitativamente quanto qualitativamente de modo a cobrir as descontinuidades apresentadas nas relações entre as variáveis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho apresenta-se o modelo de um controlador baseado em Lógica Fuzzy para um sistema de energia baseado em fonte renovável solar fotovoltaica (photovoltaic - PV) multi-string em operação isolada, para o aproveitamento da máxima potência desta fonte. O sistema é composto por painéis solares, conversor CC-CC tipo elevador de tensão (boost), armazenamento por banco de baterias, inversor trifásico e carga trifásica variável. O sistema fotovoltaico foi modelado no MATLAB/Simulink de forma a representar a curva característica V-I do módulo PV, e que é baseado nos dados disponíveis em data-sheets de painéis fotovoltaicos comerciais. Outros estudos de natureza elétrica tais como o cálculo dos valores eficazes das correntes no conversor CC-CC, para avaliação das perdas, indispensáveis para o dimensionamento de componentes eletrônicos, foram realizados. O método tradicional Perturb and Observe de rastreamento do ponto de máxima potência (Maximum Power Point Tracking MPPT) de painéis foi testado e comparado com métodos que usam a Lógica Fuzzy. Devido ao seu desempenho, foi adotado o método Fuzzy que realiza o MPPT por inferência do ciclo de trabalho de um modulador por largura de pulso (Pulse Width Modulation - PWM) através da variação da potência pela variação da corrente do painel solar. O modelo Fuzzy adotado neste trabalho foi testado com sucesso. Os resultados mostraram que ele pode ser robusto e atende à aplicação proposta. Segundo alguns testes realizados, este controlador pode realizar o MPPT de um sistema PV na configuração multi-string onde alguns arranjos fotovoltaicos são usados. Inclusive, este controle pode ser facilmente adaptado para realizar o MPPT de outras fontes de energia baseados no mesmo princípio de controle, como é o caso do aerogerador.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R. Jensen and Q. Shen. Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 73-89, 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R. Jensen and Q. Shen. Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough Based Approaches. IEEE Transactions on Knowledge and Data Engineering, 16(12): 1457-1471. 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X. Wang, J. Yang, R. Jensen and X. Liu, 'Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma,' Computer Methods and Programs in Biomedicine, vol. 83, no. 2, pp. 147-156, 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R. Jensen and Q. Shen, 'Fuzzy-Rough Data Reduction with Ant Colony Optimization,' Fuzzy Sets and Systems, vol. 149, no. 1, pp. 5-20, 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R. Jensen and Q. Shen, 'Fuzzy-Rough Attribute Reduction with Application to Web Categorization,' Fuzzy Sets and Systems, vol. 141, no. 3, pp. 469-485, 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Q. Shen and R. Jensen, 'Selecting Informative Features with Fuzzy-Rough Sets and its Application for Complex Systems Monitoring,' Pattern Recognition, vol. 37, no. 7, pp. 1351-1363, 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone, requiring no additional information. This chapter describes the fundamental ideas behind RST-based approaches and reviews related feature selection methods that build on these ideas. Extensions to the traditional rough set approach are discussed, including recent selection methods based on tolerance rough sets, variable precision rough sets and fuzzy-rough sets. Alternative search mechanisms are also highly important in rough set feature selection. The chapter includes the latest developments in this area, including RST strategies based on hill-climbing, genetic algorithms and ant colony optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R. Jensen and Q. Shen, 'Tolerance-based and Fuzzy-Rough Feature Selection,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 877-882, 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R. Jensen, Q. Shen and A. Tuson, 'Finding Rough Set Reducts with SAT,' Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, LNAI 3641, pp. 194-203, 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M. Galea, Q. Shen and J. Levine. Evolutionary approaches to fuzzy modelling. Knowledge Engineering Review, 19(1):27-59, 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M. Galea, Q. Shen and V. Singh. Encouraging Complementary Fuzzy Rules within Iterative Rule Learning. Proceedings of the 2005 UK Workshop on Computational Intelligence, pages 15-22.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonparametric probability estimation procedure using the fuzzy ARTMAP neural network is here described. Because the procedure does not make a priori assumptions about underlying probability distributions, it yields accurate estimates on a wide variety of prediction tasks. Fuzzy ARTMAP is used to perform probability estimation in two different modes. In a 'slow-learning' mode, input-output associations change slowly, with the strength of each association computing a conditional probability estimate. In 'max-nodes' mode, a fixed number of categories are coded during an initial fast learning interval, and weights are then tuned by slow learning. Simulations illustrate system performance on tasks in which various numbers of clusters in the set of input vectors mapped to a given class.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows how knowledge, in the form of fuzzy rules, can be derived from a self-organizing supervised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in two stages: pruning removes those recognition nodes whose confidence index falls below a selected threshold; and quantization of continuous learned weights allows the final system state to be translated into a usable set of rules. Simulations on a medical prediction problem, the Pima Indian Diabetes (PID) database, illustrate the method. In the simulations, pruned networks about 1/3 the size of the original actually show improved performance. Quantization yields comprehensible rules with only slight degradation in test set prediction performance.