550 resultados para Fusarium coccophilum
Resumo:
El trabajo presentado estudia la presencia de Fusarium oxysporum, F.solani(sensulato), F. equiseti y F.acuminatum en puntos del litoral de Almería, Alicante, Gerona e Islas Baleares (Menorca, Ibiza, Espalmador). Se analizaron tanto arenas de las playas (zonas intermareal y supramareal) como fondos marino situados a 27,9 y 7,2 metros de profundidad en Almería y a 10 m de profundidad en las Islas Baleares. Exceptuando el litoral de Gerona, en el resto de los enclaves se presentaron varias especies de Fusarium que se aislaron de las arenas de las playas, confirmando así resultados obtenidos con anterioridad. Lo más novedoso fue encontrar especies de Fusarium a diferentes profundidades marinas. En Almería F.oxysporum y F.equisti se aislaron a 27,9 y7,2 m profundidad. F. acuminatum se aisló de la muetra recogida a 27m de profundidad. En las islas Baleares, a10m de profundidad, se aislaron F. oxysporum, F. solani (sensulato), F.equiseti y F.acuminatum. El efecto antrópico, el comportamiento como "airborne" o los arrastres de aguas por las ramblas y torrentes podría explicar la presencia de estas especies en los hábitats mencionados. La permanencia de estas especies en los hábitats mencionados, especialmente en la zona intermareal de las playas y en los fondos marinos donde soportan elevadas presiones osmóticas por la alta salinidad del agua del mar Mediterráneo, permitirá estudios específicos sobre el comportamiento de estos hongos en medios muy salinos. Otros hongos aislados de arenas de playa y fondos marinos fueron: Acremonium, Alternaria, Aspergillus, Cladosporium, Dreschlera, Gliocladium Humicola, Penicillium, Phialophora, Rhizopus, Stemphylium, Trichoderma, Trichocladium y Ulocladium. Muchos de ellos fueron aislados del fondo marino, testimoniando así que estos hábitats no son exclusivos de Fusarium.
Resumo:
The mycelial growth of 18 Fusarium solani strains isolated from sea beds of the south-eastern coast of Spain was tested on potato-dextrose agar adjusted to different osmotic potentials with either KCl or NACl (-1.50 to -144.54 bars) in 10ºC intervals ranging from 15 to 35ºC. Fungal growth was determined by measuring colony diameter after 4 days incubation. Mycelial growth was maximal at 25ºC. The quantity and frequency pattern of mycelial growth of F. solani differ significantly at 15 and 25ºC, with maximal occurring at the highest water potential tested (-1.50 bars); and at 35ºC, with a maximal mycelial growth at -13.79 bars. The effect of water potential was independent of salt composition. The general growth pattern of F. solani showed declining growth at potentials below -41.79 bars. Fungal growth at 35ºC was always higher than that growth at 15ºC, of all the water potentials tested. Significant differences observed in the response of mycelia to water potential and temperature as main and interactive effects. The viability of cultures was increasingly inhibited as the water potential dropped, but some growth was still observed at -99.56 bars. These findings could indicate that marine strains of F. solani have a physiological mechanism that permits survival in environments with low water potential. The observed differences in viability and the magnitude growth could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.
Resumo:
Germination of macroconidia and/or microconidia of 24 strains of Fusarium solani, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. sambucinum, F. oxysporum and F. proliferatum isolated from fluvial channels and sea beds of the south-eastern coast of Spain, and three control strains (F. oxysporum isolated from affected cultures) was studied in distilled water in response to a range of water potentials adjusted with NaCI. (0, -13.79, -41.79, -70.37, -99.56 and -144.54 bars). The vialibility (UFC/ml) of suspension was also tested in three time periods (0,24 and 48h). Conidia always germinated in distilled water. The pattern of conidial germination obseved of F. verticillioides, F. oxysporum, F. proliferatum, F. chlamydosporum and F. culmorum was similar. A great diminution of spore germination was found in -13.79 bars solutions. Spore germination percentage for F. solani isolates was maximal at 48 h. and -13.79 bars with 21.33% spore germination, 16% higher than germination in distilled water. F. equiseti shows the maximum germination percentage in -144.54 bars solution in 24 h time with 12.36% germination. These results did not agree with those obtained in the viability test where maximum germination was found in distilled water. The viability analysis showed the great capacity of F. verticilloides strains to form viable colonies, even in such extreme conditions as -144,54 bars after 24 h F. proliferatum colony formation was prevented in the range of -70.37 bars. These results show the clear affectation of water potential to conidia germination of Fusaria. The ability of certain species of Fusarium to develop a saprophytic life in the salt water of the Mediterraneam Sea could be certain. Successful germination, even under high salty media conditions, suggests taht Fusarium spp. could have a competitive advantage over other soil fungi in crops irrigated with saline water. In the specific case of F. solani, water potential of -13.79 bars affected germination positively. It could indicate that F. solani has an special physiological mechanism of survival in low water potential environments.
Resumo:
Este trabajo es continuación de una serie de estudios sobre la biogeografía de Fusarium que se están realizando desde hace 5 años en España. En él se presentan los resultados analíticos para el género Fusarium de muestras de aguas del cauce del río Andarax y de fondos del mar Mediterráneo en las provincias de Granada y Almería (Sureste de España). Se analizan un total de 18 muestras de agua del río Andarax. De ellas se aislaron 10 especies de Fusarium: F. anthophilum, F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum, F. solani y F. sambucinum. De las 23 muestras del mar Mediterráneo se aislaron 5 especies: F. equiseti,F. moliniforme, F. oxysporum, F. proliferatum y F. solani. Sobre el total de muestras analizadas, un 27,45% de las muestras de aguas del río y un 29,41% de muestras de procedencia marina presentaron como mínimo una especie de Fusarium a lo largo de casi 12 meses de muestreo. Considerando las muestras según sus orígenes se encuentra que en las de origen aguas del río un 77,77% presentaron alguna especie de Fusarium; en el caso de los fondos marinos un 45,45% de las muestras presentó alguna especie de Fusarium. La mayor presencia de especies en las aguas del río puede ser debida a los contenidos en el agua de partículas de suelo y materia orgánica, después de los arrastres producidos en las orillas por las lluvias. La presencia de especies encontradas en el mar puede ser consecuencia de las aguas de los cauces que desembocan en éste. Sin embargo, no pueden excluirse otras vías.
Resumo:
En este artículo se estudia la patogenicidad de las especies de Fusarium aisladas de muestras de fondos marinos del Mediterráneo y de aguas del cauce del río Andarax en las provincias de Granada y Almería (Sureste de España) sobre plántulas de cebada, colirrábano, melón y tomate. La evaluación del poder patógeno se hizo para 41 aislados de 9 especies de Fusarium aisladas de agus de mar y de río: F. acuminatum, F. chlamydosporum, F.culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum, F. sambucinum y F. solani. Todos los aislados de las diferentes especies mostraron patogenicidad tanto en preemergencia como en postemergencia de plántulas. No fue posible distiguir a los aislados según su procedencia: aguas marinas o de río.
Resumo:
Species of Fusarium were isolated from water samples collected from the Andarax River and coastal sea water of the Mediterranean in Granada and Almería provinces of southeastern Spain. In total, 18 water samples were analyzed from the Andarax River, and 10 species of Fusarium were isolated: Fusarium anthophilum, F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum, F. solani, and F. solani. When considering the samples by their origins, 77.8% of the river water samples yielded at least one species of Fusarium , with F. oxysporum comprising 72.2% of the total isolates. In the case of marine water, 45.5% of the samples yielded at least one species of Fusarium, with F. solani comprising 36.3% of the total isolates. The pathogenicity of 41 isolates representing nine of the species collected from river an sea water during the study ws evluated on barley, kohlrabe, melon, and tomato. Inoculation with F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum F. solani, and F. sambucinum resulted in pre-and post-emergence damping off. Pathogenicity of Fusarium isolates did not seem to be related to the origin of the isolates (sea water or fresh water). However, the presence of pathogenic species of Fusarium in river water flowing to the sea could indicate long-distance dispersal in natural water environments
Resumo:
The mycelial growth of 10 Fusarium culmorum strains isolated from water of the Andarax riverbed in the provinces of Granada and Almeria in southeastern Spain was tested on potato-dextroseagar adjusted to different osmotic potentials with either KCl or NaCl (−1.50 to−144.54 bars) at 10◦C intervals ranging from15◦ to 35◦C. Fungal growth was determined by measuring colony diameter after 4 d of incubation. Mycelial growth was maximal at 25◦C. The quantity and capacity of mycelial growth of F. culmorum were similar at 15 and 25◦C, with maximal growth occurring at −13.79 bars water potential and a lack of growth at 35◦C. The effect of water potential was independent of salt composition. The general growth pattern of Fusarium culmorum growth declined at potentials below −13.79 bars. Fungal growth at 25◦C was always greater than growth at 15◦C, at all of the water potentials tested. Significant differences were observed in the response ofmycelia to water potential and temperature as main and interactive effects. The number of isolates that showed growth was increasingly inhibited as the water potential dropped, but some growth was still observable at −99.56 bars. These findings could indicate that F. culmorum strains isolated from water have a physiological mechanism that permits survival in environments with low water potential. Propagules of Fusarium culmorum are transported long distances by river water, which could explain the severity of diseases caused by F.culmorum on cereal plants irrigated with river water and its interaction under hydric stress ormoderate soil salinity. The observed differences in growth magnitude and capacity could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.
Resumo:
El sorgo anual ha sido clasificado por de Wet (1978) como Sorghum bicolor (L.) Moench (2n=20) subespecie bicolor, con 5 razas básicas: bicolor, guinea, caudatum, kafir y durra, las que incluyen los distintos tipos de sorgo existentes en el mercado como los graniferos, los forrajeros tipo sudán, dulces y escoberos (Giorda y Cordes, 2005).
Resumo:
Podredumbre del tallo y la raíz del sorgo causada por Fusarium verticillioides en España
Resumo:
Fusarium equiseti and Fusarium acuminatum are toxigenic species that contaminate cereal crops from diverse climatic regions. They are common in Spanish cereals. The information available on their phylogenetics and toxigenic profiles is, however, insufficient to assist risk evaluation. In this work, phylogenetic analyses were performed using partial sequences of the translation elongation factor gene (EF-1a) of F. equiseti and F. acuminatum strains isolated from barley and wheat from Spain and other countries. The Northern and Southern European F. equiseti strains largely separated into two phylogenetically distinct clusters. This suggests the existence of two distinct populations within this species, explaining its presence in these regions of markedly different climate. Production of type A and B trichothecenes by the Spanish strains, examined in wheat cultures using a multitoxin analytical method, indicated that F. equiseti could produce deoxynivalenol and nivalenol and other trichothecenes, at concentrations that might represent a significant risk of toxin contamination for Southern European cereals. F. acuminatum showed low intraspecific genetic variability and 58% of the strains could produce deoxynivalenol at low level. Neither species was found to produce T-2 or HT-2 toxins. The present results provide important phylogenetic and toxigenic information essential for the accurate prediction of toxigenic risk.
Resumo:
A phylogenic analysis of Fusarium proliferatum and closely related species was performed using the most variable part within the intergenic spacer of the nuclear ribosomal DNA (IGS) and compared with a previously reported phylogeny performed in the same group of samples with a partial region of the nuclear single copy gene encoding the elongation factor 1α (EF-1α). The phylogenies from both genomic sequences were not concordant and revealed the presence of two nonorthologous IGS types, named types I and II, in F. proliferatum and Fusarium globosum. Two specific PCR assays designed to amplify either IGS type I or type II revealed that only one IGS type was present in each individual in these two species. The presence of both IGS types at the species level indicates that homogenization has not been achieved yet. This might be retarded if panmictic sexual reproduction was affected by certain levels of clonal reproduction and/or by the diverse hosts that these species are able to colonize. This study indicates that taxonomic studies carried out with the IGS rDNA, which has been widely used in Fusarium, should be undertaken with caution.
Resumo:
Fusarium proliferatum has been reported on garlic in the Northwest USA, Spain and Serbia, causing water-soaked tan-colored lesions on cloves. In this work, Fusarium proliferatum was isolated from 300 symptomatic garlic bulbs. Morphological identification of Fusarium was confirmed using species-specific PCR assays and EF-1α sequencing. Confirmation of pathogenicity was conducted with eighteen isolates. Six randomly selected F. proliferatum isolates from garlic were tested for specific pathogenicity and screened for fusaric acid production. Additionally, pathogenicity of each F. proliferatum isolate was tested on healthy seedlings of onion (Allium cepa), leek (A. porrum), scallions (A. fistulosum), chives (A. schoenoprasum) and garlic (A. sativum). A disease severity index (DSI) was calculated as the mean severity on three plants of each species with four test replicates. Symptoms on onion and garlic plants were observed three weeks after inoculation. All isolates tested produced symptoms on all varieties inoculated. Inoculation of F. proliferatum isolates from diseased garlic onto other Allium species provided new information on host range and pathogenicity. The results demonstrated differences in susceptibility with respect to host species and cultivar. The F. proliferatum isolates tested all produced fusaric acid (FA); correlations between FA production and isolate pathogenicity are discussed. Additionally, all isolates showed the presence of the FUM1 gene suggesting the ability of Spanish isolates to produce fumonisins.
Resumo:
Diseases that affect garlic during storage can lead to severe economic losses for farmers worldwide. One causal agent of clove rot is Fusarium proliferatum. Here, the progress of clove rot caused by F. proliferatum and its dependence on different storage conditions and cultivar type were studied. The effect of temperature on mycelial growth, conidial viability, and fungal survival during garlic commercial storage was documented. Samples of 50 bulbs from a randomized field trial with three different clonal generations for purple garlic (F3, F4 and F5) and the F4 clonal generation for white garlic were labeled and stored for two months (short-term storage). In addition, another sample of the F5 clonal generation of purple garlic was stored for 6 months after harvest (long-term storage). The presence of the pathogen and the percentage of symptomatic cloves were evaluated. A notable difference in the rot severity index (RSI) of different garlic varieties was observed. In all studied cases, clove rot increased with storage time at 20 ◦ C, and the white garlic variety had a higher index of rot severity after two months of storage. Additionally, there were clear differences between the growth rates of F. proliferatum isolates. Studies conducted on the temperature responses of the pathogen propagules showed that expo- sure for at least 20 min at 50 ◦ C was highly effective in significantly reducing the viability of fungal conidia. Pathogenicity studies showed that the fungus is pathogenic in all commercial varieties. However, there were significant differences in varietal susceptibility between Chinese and white garlic type cultivars (81.84 ± 16.44% and 87.5 ± 23.19% symptomatic cloves, respectively) and purple cultivars (49.06 ± 13.42% symptomatic cloves)
Resumo:
La fusariosis del cuello y de las raíces del tomate ("mancha chocolate"), causada por el hongo F. o. f. sp. radicis-lycopersici, es una micosis cada vez más extendida en los cultivos de tomate de las provincias de Almería y Granada. Su gravedad es alta, llegando a alcanzar al 78% de las plantas en algún invernadero con cultivo sobre fibra de coco. Ante esta situación, se estimó necesario evaluar la resistencia de patrones utilizados para injertar variedades de tomate. Así, 16 patrones fueron valorados frente a una cepa muy patógena del hongo. Los patrones fueron:CLXTPG01, AR9704, AR97015, AR97009, Morgan, Spirit, Herman, Armstrong, Arnold, Big Power, Emperador, 61-071, Montezuma, Beaufort, Multifort, Maxifort, Tovi Star y Alegro. Dos ensayos sobre plantas en estado de 6-8 hojas verdaderas bien formadas, mostraron que todos los patrones expresaron una resistencia completa, exceptuando los denominados CLXTPG01 y AR97015. Entendemos que esta información es necesaria debidio a la escasa disponibilidad.
Resumo:
Fusarium equiseti is a toxigenic species that often contaminates ce real crops from diverse climatic regions such as Northern and Southern Europe. Previous results suggested the existence of two distinct populations within this species with differences in toxin pro file which largely corresponded to North and South Europe (Spain). In this work, growth rate profiles of 4 F. equiseti strains isolated from different cereals and distinct Spanish regions were determined on wheat and barley based media at a range of temperatures (15, 20, 25, 30, 35 and 40 °C) and water potentialregimens(−0.7,−2.8,−7.0,and −9.8MPa,correspondingto 0.99,0.98,0.95 and 0.93aw values).Growth was observed at all temperatures except at 40 °C, and at all the solute potential values except at−9.8 MPa when combined with 15 °C. Optimal growth was observed at 20– 30 °C and −0.7/−2.8 MPa. The effect of these factors on trichothecene biosynthesis was examined on a F. equiseti strain using a newly developed real time RT-PCR protocol to quantify TRI5 gene expression at 15, 25 and 35 °C and −0.7, −2.8, − 7.0 and −9.8 MPa on wheat and barley based media. Induction of TRI5 expression was detected between 25 and 35 °C and −0.7 and − 2.8 MPa, with maximum values at 35 °C and −2.8 MPa being higher in barley than in wheat medium. These results appeared to be consistent with a population well adapted to the present climatic conditions and predicted scenarios for Southern Europe and suggested some differences depending on the cereal considered. These are also discussed in relation to other Fusarium species co-occurring in cereals grown in this region and to their significance for prediction and control strategies of toxigenic risk in future scenarios of climate change for this region.