942 resultados para Fungi imperfecti.
Resumo:
Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant roots by mycorrhizal fungi. Here we quantify the global patterns of these relationships. Location Global. Methods Data on plant root colonization intensities by the two dominant types of mycorrhizal fungi world-wide, arbuscular (4887 plant species in 233 sites) and ectomycorrhizal fungi (125 plant species in 92 sites), were compiled from published studies. Data for climatic and soil factors were extracted from global datasets. For a given mycorrhizal type, we calculated at each site the mean root colonization intensity by mycorrhizal fungi across all potentially mycorrhizal plant species found at the site, and subjected these data to generalized additive model regression analysis with environmental factors as predictor variables. Results We show for the first time that at the global scale the intensity of plant root colonization by arbuscular mycorrhizal fungi strongly relates to warm-season temperature, frost periods and soil carbon-to-nitrogen ratio, and is highest at sites featuring continental climates with mild summers and a high availability of soil nitrogen. In contrast, the intensity of ectomycorrhizal infection in plant roots is related to soil acidity, soil carbon-to-nitrogen ratio and seasonality of precipitation, and is highest at sites with acidic soils and relatively constant precipitation levels. Main conclusions We provide the first quantitative global maps of intensity of mycorrhizal colonization based on environmental drivers, and suggest that environmental changes will affect distinct types of mycorrhizae differently. Future analyses of the potential effects of environmental change on global carbon and nutrient cycling via mycorrhizal pathways will need to take into account the relationships discovered in this study.
Resumo:
Three species of ectomycorrhizal fungi (Hebeloma crustuliniforme, Suillus variegatus and Cenococcum geophilum) were grown in axenic culture amended with range of AsO43– concentration under three different PO43– regimes. The fungi exhibited different growth responses to AsO43– that varied with PO43– concentration. Suillus variegatus showed the greatest sensitivity to AsO43–, with growth almost completely inhibited in the presence of AsO43– under the lower two PO43– treatments. Under the highest PO43– treatment however, growth was enhanced and S. variegatus was able to persist at AsO43– concentrations of up to 4 mM. Hebeloma crustuliniforme also showed high sensitivity to AsO43– especially at low PO43– concentration. The two higher PO43– treatments had an ameliorating effect on AsO43– toxicity in H. crustuliniforme. This demonstrates the ability of PO43– to alleviate AsO43– toxicity. The response from S. variegatus and H. crustuliniforme, both basidiomycetes, was in contrast to the ascomycete C. geophilum. This fungus demonstrated tolerance to AsO43– when grown in culture solution and PO43– did not have an ameliorating effect on AsO43– toxicity in C. geophilum.
Resumo:
Two closely related chemoecological groups of fungi, the ammonia fungi and the postputrefaction fungi, have been associated with the decomposition by-products of cadavers. Sporocarps have been observed in disparate woodlands across the world and often mark sites of graves. These groups of fungi provide visible markers of the sites of cadaver decomposition and follow repeated patterns of successional change as apparent decomposition proceeds. We suggest these phenomena may become a useful tool for crime scene investigation, forensic archaeology and forensic taphonomy.
Resumo:
The p-nitrophenyl phosphomonoesterase assay (p NPPase) is commonly used to measure cell-wall-associated and extracellular phosphatase activity of soil fungi. p NPPases are usually assayed in the context of fungal nutrition, where inorganic P supply might be enhanced by the mineralisation of monoester organic P sources in the soil. The importance of the assay to the P nutrition of soil fungi is considered based on the evidence currently available including the consistency of methodological approach. The nature of organic P in the soil and the relevance of the assay to some specific soil substrates is discussed, particularly the chemistry and bioavailability of myo-inositol hexakisphosphate and the lower inositol phosphates. The evidence for the long-term stability of p NPPases in the soil is examined in the light of the persistence of p NPPase in soils. The role of persistent extracellular fungal p NPPases in the soil P cycle is discussed. Conclusions from p NPPase based studies must be based upon an appreciation of the constraints of the assay and the complex chemistry of organic P and p NPPase in the soil.
Resumo:
The p-nitrophenol phosphomonoesterase assay (pNPPase) is commonly used to measure cell-wall-associated and extracellular phosphatase activity of soil fungi. pNPPases are usually assayed in the context of fungal nutrition, where inorganic P supply might be enhanced by the mineralisation of organic P sources in the soil. We report here on a series of experiments with the ectomycorrhizal basidiomycete Hebeloma cylindrosporum that highlight components of accepted methodology that might impinge on the reliability of the assay. These include the loss of pNPPase after filtration, inaccuracies in measuring wall-associated enzyme and the ample pool of intracellular pNPPase can be mistakenly measured as external pNPPase if cells are accidentally damaged.
Resumo:
Strains of Hebeloma representative of different climatic zones were grown in axenic culture at either 2 °C and 22° or 6° and 22°. Culture filtrates were assayed for proteolytic activity using FITC labelled BSA as a substrate. Assays were run between 0–37°. Growth at low temperature induced greater proteolytic activity (g−1 D.W. mycelium). Many of the strains produced protease(s) which retained significant activity at temperatures as low as 0°, and a thermal optimum between 0–6° with a second optimum at higher temperature. The results are discussed in relation the nutrient acquisition potential of ectomycorrhizal fungi at low temperature and the contribution such cold active proteases might make to the soil enzyme pool.
Resumo:
Arctic and temperate strains of Hebeloma spp. were grown in axenic culture on glutamic acid, alanine, lysine and NH4+ as sole sources of nitrogen (N), with excess carbon (C) or deficient C (supplied as glucose). Their ability to utilize seed protein as a natural N source was also assessed. All strains tested had the capacity to assimilate amino acids and generally utilized alanine and glutamic acid more readily than NH4+. Some strains were able to utilize amino C when starved of glucose C, and could mineralize amino-N to NH3-N. Arctic strains, in particular, appeared to be pre-adapted to the utilization of seed protein N and glutamic acid N, which is often liberated in high concentrations after soil freezing. The results are discussed in relation to their possible ecological importance.
Resumo:
Forensic archaeologists and criminal investigators employ many different techniques for the location, recovery, and analysis of clandestine graves. Many of these techniques are based upon the premise that a grave is an anomaly and therefore differs physically, biologically, or chemically from its surroundings. The work reviewed in this communication demonstrates how and why field mycology might provide a further tool towards the investigation of scenes of crime concealed in forest ecosystems. The fruiting structures of certain fungi, the ammonia and the postputrefaction fungi, have been recorded repeatedly in association with decomposed mammalian cadavers in disparate regions of the world. The ecology and physiology of these fungi are reviewed briefly with a view to their potential as a forensic tool. This application of mycology is at an interface with forensic archaeology and forensic taphonomy and may provide a means to detect graves and has the potential to estimate postburial interval.
Resumo:
In the largely organic soils in which ectomycorrhizas are commonly found, a preference for absorbing organic nitrogen over mineral forms is likely to be an advantage, especially where mineralisation rates are low. To determine rates of both independent and preferential growth of ectomycorrhizal basidiomycetes on organic and inorganic nitrogen, strains of Hebeloma were grown on nutrient agar media containing either NH4+ or glutamic acid as the sole source of nitrogen, on both single medium and split plate Petri dishes. Growth rates on the split plate Petri dishes, where the fungi had access to both nitrogen sources, were generally greater than on the single medium dishes. Growth on glutamic acid was at least equal to, and usually greater than, that on NH4+. In some cases growth on NH4+ alone appeared severely inhibited, a condition that was partially alleviated by access to glutamic acid on the split plates Petri dishes. This highlights a potential pitfall of single nitrogen source growth studies. The greater growth of most strains on glutamic acid suggests an adaptation to organic nitrogen utilisation in these strains. If this is so in soils with low mineralisation rates, direct uptake of amino acids by ectomycorrhizal plants could by-pass the bottle neck that requires mineral nitrogen to be made available for plant uptake.
Resumo:
Data generated from next generation sequencing (NGS) will soon comprise the majority of information about arbuscular mycorrhizal fungal (AMF) communities. Although these approaches give deeper insight, analysing NGS data involves decisions that can significantly affect results and conclusions. This is particularly true for AMF community studies, because much remains to be known about their basic biology and genetics. During a workshop in 2013, representatives from seven research groups using NGS for AMF community ecology gathered to discuss common challenges and directions for future research. Our goal was to improve the quality and accessibility of NGS data for the AMF research community. Discussions spanned sampling design, sample preservation, sequencing, bioinformatics and data archiving. With concrete examples we demonstrated how different approaches can significantly alter analysis outcomes. Failure to consider the consequences of these decisions may compound bias introduced at each step along the workflow. The products of these discussions have been summarized in this paper in order to serve as a guide for any researcher undertaking NGS sequencing of AMF communities.