922 resultados para Function Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis provides a query model suitable for context sensitive access to a wide range of distributed linked datasets which are available to scientists using the Internet. The model is designed based on scientific research standards which require scientists to provide replicable methods in their publications. Although there are query models available that provide limited replicability, they do not contextualise the process whereby different scientists select dataset locations based on their trust and physical location. In different contexts, scientists need to perform different data cleaning actions, independent of the overall query, and the model was designed to accommodate this function. The query model was implemented as a prototype web application and its features were verified through its use as the engine behind a major scientific data access site, Bio2RDF.org. The prototype showed that it was possible to have context sensitive behaviour for each of the three mirrors of Bio2RDF.org using a single set of configuration settings. The prototype provided executable query provenance that could be attached to scientific publications to fulfil replicability requirements. The model was designed to make it simple to independently interpret and execute the query provenance documents using context specific profiles, without modifying the original provenance documents. Experiments using the prototype as the data access tool in workflow management systems confirmed that the design of the model made it possible to replicate results in different contexts with minimal additions, and no deletions, to query provenance documents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBF) to discretize the space variable. By contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example is presented to describe the fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating of fractional differential equations, and it has good potential in development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the identification of the gene family of kallikrein related peptidases (KLKs), their function has been robustly studied at the biochemical level. In vitro biochemical studies have shown that KLK proteases are involved in a number of extracellular processes that initiate intracellular signaling pathways by hydrolysis, as reviewed in Chapters 8, 9, and 15, Volume 1. These events have been associated with more invasive phenotypes of ovarian, prostate, and other cancers. Concomitantly, aberrant expression of KLKs has been associated with poor prognosis of patients with ovarian and prostate cancer (Borgoño and Diamandis, 2004; Clements et al., 2004; Yousef and Diamandis, 2009), with prostate-specific antigen (PSA, KLK3) being a long standing, clinically employed biomarker for prostate cancer (Lilja et al., 2008). Data generated from patient samples in clinical studies, alongwith biochemical activity, suggests that KLKs function in the development and progression of these diseases. To bridge the gap between their function at the molecular level and the clinical need for efficacious treatment and prognostic biomarkers, functional assessment at the in vitro cellular level, using various culture models, is increasing, particularly in a three-dimensional (3D) context (Abbott, 2003; Bissell and Radisky, 2001; Pampaloni et al., 2007; Yamada and Cukierman, 2007).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose To develop a novel 3-D cell culture model with the view to studying the pathomechanisms underlying the development of age-related macular degeneration (AMD). Our central hypothesis is that the silk structural protein fibroin used in conjunction with cultured human cells can be used to mimic the structural relationships between the RPE and choriocapillaris in health and disease. Methods Co-cultures of human RPE cells (ARPE-19 cells grown in Miller’s medium) and microvascular endothelial cells (HMEC-1 cells grown in endothelial culture medium) were established on opposing sides of a synthetic Bruch’s membrane (3 microns thick) constructed from B mori silk fibroin. Cell attachment was facilitated by pre-coating the fibroin membrane with vitronectin (for ARPE-19 cells) and gelatin (for HMEC-1 cells) respectively. The effects of tropoelastin on attachment of ARPE-19 cells was also examined. Barrier function was examined by measurement of trans-epithelial resistance (TER) using a voltohmmeter (EVOM-2). The phagocytic activity of the synthetic RPE was tested using vitronectin-coated microspheres (2 micron diameter FluoSpheres). In some cultures, membrane defects were created by puncturing within a 24 G needle. The architecture of the synthetic tissue before and after wounding was examined by confocal microscopy after staining for ZO-1 and F-actin. Results The RPE layer of the 3D model developed a cobblestoned morphology (validated by staining for ZO-1 and F-actin), displayed barrier function (validated by measurement of TER) and demonstrated cytoplasmic uptake of vitronectin-coated microspheres. Attachment of ARPE-19 cells to fibroin was unaffected by tropoelastin. Microvascular endothelial cells attached well to the gelatin-coated surface of the fibroin membrane and remained physically separated from the overlaying RPE layer. The fibroin membranes were amenable to puncturing without collapse thus providing the opportunity to study transmembrane migration of the endothelial cells. Conclusions Synthetic Bruch’s membranes constructed from silk fibroin, vitronectin and gelatin, support the co-cultivation of RPE cells and microvascular endothelial cells. The resulting RPE layer displays functions similar to that of native RPE and the entire tri-layered structure displays potential to be used as an in vitro model of choroidal neovascularization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper examines the impact of the introduction of no-fault divorce legislation in Australia. The approach used is rather novel, a hazard model of the divorce rate is estimated with the role of legislation captured via a time-varying covariate. The paper concludes that contrary to US empirical evidence, no-fault divorce legislation appears to have had a positive impact upon the divorce rate in Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new optimal control model of the interactions between a growing tumour and the host immune system along with an immunotherapy treatment strategy is presented. The model is based on an ordinary differential equation model of interactions between the growing tu- mour and the natural killer, cytotoxic T lymphocyte and dendritic cells of the host immune system, extended through the addition of a control function representing the application of a dendritic cell treat- ment to the system. The numerical solution of this model, obtained from a multi species Runge–Kutta forward-backward sweep scheme, is described. We investigate the effects of varying the maximum al- lowed amount of dendritic cell vaccine administered to the system and find that control of the tumour cell population is best effected via a high initial vaccine level, followed by reduced treatment and finally cessation of treatment. We also found that increasing the strength of the dendritic cell vaccine causes an increase in the number of natural killer cells and lymphocytes, which in turn reduces the growth of the tumour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose/Objective: The basis for poor outcomes in some patients post transfusion remains largely unknown. Despite leukodepletion, there is still evidence of immunomodulatory effects of transfusion that require further study. In addition, there is evidence that the age of blood components transfused significantly affects patient outcomes. Myeloid dendritic cell (DC) and monocyte immune function were studied utilising an in vitro whole blood model of transfusion. Materials and methods: Freshly collected (‘recipient’) whole blood was cultured with ABO compatible leukodepleted PRBC at 25% blood replacement-volume (6hrs). PRBC were assayed at [Day (D) 2, 14, 28and 42 (date-of expiry)]. In parallel, LPS or Zymosan (Zy) were added to mimic infection. Recipients were maintained for the duration of the time course (2 recipients, 4 PRBC units, n = 8).Recipient DC and monocyte intracellular cytokines and chemokines (IL-6, IL-10, IL-12,TNF-a, IL-1a, IL-8, IP-10, MIP-1a, MIP-1b, MCP-1) were measured using flow cytometry. Changes in immune response were calculated by comparison to a parallel no transfusion control (Wilcoxin matched pairs). Influence of storage age was calculated using ANOVA. Results: Significant suppression of DC and monocyte inflammatory responses were evident. DC and monocyte production of IL-1a was reduced following exposure to PRBC regardless of storage age (P < 0.05 at all time points). Storage independent PRBC mediated suppression of DC and monocyte IL-1a was also evident in cultures costimulated with Zy. In cultures co-stimulated with either LPS or Zy, significant suppression of DC and monocyte TNF-a and IL-6 was also evident. PRBC storage attenuated monocyte TNF-a production when co-cultured with LPS (P < 0.01 ANOVA). DC and monocyte production of MIP-1a was significantly reduced following exposure to PRBC (DC: P < 0.05 at D2, 28, 42; Monocyte P < 0.05 all time points). In cultures co-stimulated with LPS and zymosan, a similar suppression of MIP-1a production was also evident, and production of both DC and monocyte MIP-1b and IP-10 were also significantly reduced. Conclusions: The complexity of the transfusion context was reflected in the whole blood approach utilised. Significant suppression of these key DC and monocyte immune responses may contribute to patient outcomes, such as increased risk of infection and longer hospital stay, following blood transfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Business process modelling as a practice and research field has received great attention over recent years. Organizations invest significantly into process modelling in terms of training, tools, capabilities and resources. The return on this investment is a function of process model re-use, which we define as the recurring use of process models to support organizational work tasks. While prior research has examined re-use as a design principle, we explore re-use as a behaviour, because evidence suggest that analysts’ re-use of process models is indeed limited. In this paper we develop a two-stage conceptualization of the key object-, behaviour- and socioorganization-centric factors explaining process model re-use behaviour. We propose a theoretical model and detail implications for its operationalization and measurement. Our study can provide significant benefits to our understanding of process modelling and process model use as key practices in analysis and design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBFs) to discretize the space variable. In contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example which is presented to describe a fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating fractional differential equations, and it has good potential in the development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matern correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.