894 resultados para Free movement of persons
Resumo:
We tagged a total of 14 yellowtail snapper (Ocyurus chrysurus Bloch 1790) and black grouper (Mycteroperca bonaci Poey 1860) inside the Conch Reef Research Only Area (a no-take marine reserve) in the northern Florida Keys National Marine Sanctuary in November 2001. Both species are heavily exploited in the region. Our objective was to characterize site fidelity and movement behavior along the reef tract to the north and south of the release point. Fishes were collected by baited hook and line from the surface, surgically-tagged with coded-acoustic transmitters, and returned to the reef by snorkelers. Tracking of fish movement behavior was conducted by five acoustic receivers deployed on the seafloor from Davis Reef in the south to Pickles Reef in the north. Fishes were tracked for up to eight months. Results indicated that the majority of signal detections for individual fish from both species were recorded at the two Conch Reef receivers. Limited movement from Conch Reef to Davis Reef was recorded, but no signal detections were recorded at the two sites to the north of Conch Reef. These results suggest that both species show site fidelity to Conch Reef. Future studies will seek to characterize this site fidelity with increased temporal and spatial resolution at Conch Reef. (PDF contains 25 pages.)
Resumo:
The dispersion of an isolated, spherical, Brownian particle immersed in a Newtonian fluid between infinite parallel plates is investigated. Expressions are developed for both a 'molecular' contribution to dispersion, which arises from random thermal fluctuations, and a 'convective' contribution, arising when a shear flow is applied between the plates. These expressions are evaluated numerically for all sizes of the particle relative to the bounding plates, and the method of matched asymptotic expansions is used to develop analytical expressions for the dispersion coefficients as a function of particle size to plate spacing ratio for small values of this parameter.
It is shown that both the molecular and convective dispersion coefficients decrease as the size of the particle relative to the bounding plates increase. When the particle is small compared to the plate spacing, the coefficients decrease roughly proportional to the particle size to plate spacing ratio. When the particle closely fills the space between the plates, the molecular dispersion coefficient approaches zero slowly as an inverse logarithmic function of the particle size to plate spacing ratio, and the convective dispersion coefficent approaches zero approximately proportional to the width of the gap between the edges of the sphere and the bounding plates.
Resumo:
Being able to detect a single molecule without the use of labels has been a long standing goal of bioengineers and physicists. This would simplify applications ranging from single molecular binding studies to those involving public health and security, improved drug screening, medical diagnostics, and genome sequencing. One promising technique that has the potential to detect single molecules is the microtoroid optical resonator. The main obstacle to detecting single molecules, however, is decreasing the noise level of the measurements such that a single molecule can be distinguished from background. We have used laser frequency locking in combination with balanced detection and data processing techniques to reduce the noise level of these devices and report the detection of a wide range of nanoscale objects ranging from nanoparticles with radii from 100 to 2.5 nm, to exosomes, ribosomes, and single protein molecules (mouse immunoglobulin G and human interleukin-2). We further extend the exosome results towards creating a non-invasive tumor biopsy assay. Our results, covering several orders of magnitude of particle radius (100 nm to 2 nm), agree with the `reactive' model prediction for the frequency shift of the resonator upon particle binding. In addition, we demonstrate that molecular weight may be estimated from the frequency shift through a simple formula, thus providing a basis for an ``optical mass spectrometer'' in solution. We anticipate that our results will enable many applications, including more sensitive medical diagnostics and fundamental studies of single receptor-ligand and protein-protein interactions in real time. The thesis summarizes what we have achieved thus far and shows that the goal of detecting a single molecule without the use of labels can now be realized.
Resumo:
A number of authors have described the manner in which young salmonids, soon after emergence from the gravel, set up and defend territories. This leads to mortality or downstream displacement of the individuals which are unable to acquire territories and is widely accepted as the main method of population regulation amongst young salmonids. In some field experiments the fish were constrained in screened reaches and the option of downstream dispersal for the surplus fry was thus excluded. In order to explore some aspects of downstream dispersal more closely under conditions which gave more control than is obtained in a natural stream, four experimental channels were set up at Grassholme reservoir in Teesdale. The report describes the results of investigations on the timing and rate of downstream movement of young brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.) out of experimental channels, with special reference to the effect of water velocity on the rate of ”emigration”.
Resumo:
Billfish movements relative to the International Commission for the Conservation of Atlantic Tunas management areas, as well as U.S. domestic data collection areas within the western North Atlantic basin, were investigated with mark-recapture data from 769 blue marlin, Makaira nigricans, 961 white marlin, Tetrapturus albidus, and 1,801 sailfish, Istiophorus platypterus. Linear displacement between release and recapture locations ranged from zero (all species) to 15,744 km (mean 575, median 119, SE 44) for blue marlin, 6,523 km (mean 719, median 216, SE 33) for white marlin, and 3,845 km (mean 294, median 98, SE 13) for sailfish. In total, 2,824 (80.0%) billfish were recaptured in the same management area of release. Days at liberty ranged from zero (all species) to 4,591 (mean 619, median 409, SE 24) for blue marlin, 5,488 (mean 692, median 448, SE 22) for white marlin, and 6,568 (mean 404, median 320, SE 11) for sailfish. The proportions (per species) of visits were highest in the Caribbean area for blue marlin and white marlin, and the Florida East Coast area for sailfish. Blue marlin and sailfish were nearly identical when comparing the percent of individuals vs. the number of areas visited. Overall, white marlin visited more areas than either blue marlin or sailfish. Seasonality was evident for all species, with overall results generally reflecting the efforts of the catch and release recreational fishing sector, particularly in the western North Atlantic. This information may be practical in reducing the uncertainties in billfish stock assessments and may offer valuable insight into management consideration of time-area closure regulations to reduce bycatch mortality of Atlantic billfishes.