968 resultados para Forcing terms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an experimental investigation into the interactions that occur between two lean turbulent premixed flames stabilised on conical bluff-bodies when they are moved closer together. Cinematographic OH-PLIF measurements were acquired to investigate adjacent flame front interactions as a function of flame separation distance (S). Flame surface density (FSD) and curvature were determined to characterise the unforced flames. Acoustic forcing was then applied to explore the amplitude dependent thermo-acoustic response. Phase-averaged FSD and global heat release measurements in the form of OH * chemiluminescence were obtained for a range of forcing frequencies (f) and amplitudes (A) as a function of S. As the flames were brought closer together the adjacent annular jets were found to merge into a single jet structure. This caused adjacent flame fronts to merge above the wake region between the two flames at a location determined by the jet efflux (flame angle) and S. This region of flame-flame interaction we refer to as 'interacting region'. In the unforced flames, a trend of increasingly negative curvature for decreasing S produced a small net increase in flame surface area via cusp formation. When subjected to acoustic forcing, S-dependent regimes were found in the global heat release response as a function A. The overall trend showed that the occurrence of jet/flame merging reduces the value of A at which non-linear response occurs. In support of previous findings for flames stabilised along shear layers, the phase-averaged FSD showed that the flame dynamics that drive the thermo-acoustic response result from the roll-up of vortices which generate large-scale vortex-flame interactions. Compared with axisymmetric flames, the occurrence of jet merging alters the vortex-flame interactions resulting in an asymmetric contribution to the heat release between the wall and interacting regions. The majority of the heat release was found to occur in the interacting region through the rapid production and destruction of flame surface area. The occurrence of jet merging and large-scale interactions between adjacent flames result in different physical mechanisms that drive the thermo-acoustic response compared with single axisymmetric flames. © 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In [5] it was shown that, for a standard quarter-car vehicle model and a road disturbance whose velocity profile is white noise of intensity A, the mean power dissipated in the suspension is equal to kA/2 where k is the tyre vertical stiffness. It is remarkable that the power dissipation turns out to be independent of all masses and suspension parameters. The proof in [5] makes use of a spectral formulation of white noise and is specific to linear systems. This paper casts the result in a more general form and shows that it follows from a simple application of Ito calculus. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine theoretically the transient displacement flow and density stratification that develops within a ventilated box after two localized floor-level heat sources of unequal strengths are activated. The heat input is represented by two non-interacting turbulent axisymmetric plumes of constant buoyancy fluxes B1 and B2 > B1. The box connects to an unbounded quiescent external environment of uniform density via openings at the top and base. A theoretical model is developed to predict the time evolution of the dimensionless depths λj and mean buoyancies δj of the 'intermediate' (j = 1) and 'top' (j = 2) layers leading to steady state. The flow behaviour is classified in terms of a stratification parameter S, a dimensionless measure of the relative forcing strengths of the two buoyant layers that drive the flow. We find that dδ1/dτ α 1/λ1 and dδ2/dτ α 1/λ2, where τ is a dimensionless time. When S 1, the intermediate layer is shallow (small λ1), whereas the top layer is relatively deep (large λ2) and, in this limit, δ1 and δ2 evolve on two characteristically different time scales. This produces a time lag and gives rise to a 'thermal overshoot', during which δ1 exceeds its steady value and attains a maximum during the transients; a flow feature we refer to, in the context of a ventilated room, as 'localized overheating'. For a given source strength ratio ψ = B1/B2, we show that thermal overshoots are realized for dimensionless opening areas A < Aoh and are strongly dependent on the time history of the flow. We establish the region of {A, ψ} space where rapid development of δ1 results in δ1 > δ2, giving rise to a bulk overturning of the buoyant layers. Finally, some implications of these results, specifically to the ventilation of a room, are discussed. © Cambridge University Press 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Screech is a high frequency oscillation that is usually characterized by instabilities caused by large-scale coherent flow structures in the wake of bluff-body flameholders and shear layers. Such oscillations can lead to changes in flame surface area which can cause the flame to burn unsteadily, but also couple with the acoustic modes and inherent fluid-mechanical instabilities that are present in the system. In this study, the flame response to hydrodynamic oscillations is analyzed in a controlled manner using high-fidelity Computational Fluid Dynamics (CFD) with an unsteady Reynolds-averaged Navier-Stokes approach. The response of a premixed flame with and without transverse velocity forcing is analyzed. When unforced, the flame is shown to exhibit a self-excitation that is attributed to the anti-symmetric shedding of vortices in the wake of the flameholder. The flame is also forced using two different kinds of low-amplitude out-of-phase inlet velocity forcing signals. The first forcing method is harmonic forcing with a single characteristic frequency, while the second forcing method involves a broadband forcing signal with frequencies in the range of 500 - 1000 Hz. For the harmonic forcing method, the flame is perturbed only lightly about its mean position and exhibits a limit cycle oscillation that is characteristic of the forcing frequency. For the broadband forcing method, larger changes in the flame surface area and detachment of the flame sheet can be seen. Transition to a complicated trajectory in the phase space is observed. When analyzed systematically with system identification methods, the CFD results, expressed in the form of the Flame Transfer Function (FTF) are capable of elucidating the flame response to the imposed perturbation. The FTF also serves to identify, both spatially and temporally, regions where the flame responds linearly and nonlinearly. Locking-in between the flame's natural self-excited frequency and the subharmonic frequencies of the broadband forcing signal is found to alter the dynamical behaviour of the flame. Copyright © 2013 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEECAS SKLLQG