963 resultados para Foot, Solomon, 1802-1866.
Resumo:
Background Skin temperature assessment is a promising modality for early detection of diabetic foot problems, but its diagnostic value has not been studied. Our aims were to investigate the diagnostic value of different cutoff skin temperature values for detecting diabetes-related foot complications such as ulceration, infection, and Charcot foot and to determine urgency of treatment in case of diagnosed infection or a red-hot swollen foot. Materials and Methods The plantar foot surfaces of 54 patients with diabetes visiting the outpatient foot clinic were imaged with an infrared camera. Nine patients had complications requiring immediate treatment, 25 patients had complications requiring non-immediate treatment, and 20 patients had no complications requiring treatment. Average pixel temperature was calculated for six predefined spots and for the whole foot. We calculated the area under the receiver operating characteristic curve for different cutoff skin temperature values using clinical assessment as reference and defined the sensitivity and specificity for the most optimal cutoff temperature value. Mean temperature difference between feet was analyzed using the Kruskal–Wallis tests. Results The most optimal cutoff skin temperature value for detection of diabetes-related foot complications was a 2.2°C difference between contralateral spots (sensitivity, 76%; specificity, 40%). The most optimal cutoff skin temperature value for determining urgency of treatment was a 1.35°C difference between the mean temperature of the left and right foot (sensitivity, 89%; specificity, 78%). Conclusions Detection of diabetes-related foot complications based on local skin temperature assessment is hindered by low diagnostic values. Mean temperature difference between two feet may be an adequate marker for determining urgency of treatment.
Resumo:
Background Prevention of foot ulcers in patients with diabetes is extremely important to help reduce the enormous burden of foot ulceration on both patient and health resources. A comprehensive analysis of reported interventions is not currently available, but is needed to better inform caregivers about effective prevention. The aim of this systematic review is to investigate the effectiveness of interventions to prevent first and recurrent foot ulcers in persons with diabetes who are at risk for ulceration. Methods The available medical scientific literature in PubMed, EMBASE, CINAHL and the Cochrane database was searched for original research studies on preventative interventions. Both controlled and non-controlled studies were selected. Data from controlled studies were assessed for methodological quality by two independent reviewers. Results From the identified records, a total of 30 controlled studies (of which 19 RCTs) and another 44 non-controlled studies were assessed and described. Few controlled studies, of generally low to moderate quality, were identified on the prevention of a first foot ulcer. For the prevention of recurrent plantar foot ulcers, multiple RCTs with low risk of bias show the benefit for the use of daily foot skin temperature measurements and consequent preventative actions, as well as for therapeutic footwear that demonstrates to relieve plantar pressure and that is worn by the patient. To prevent recurrence, some evidence exists for integrated foot care when it includes a combination of professional foot treatment, therapeutic footwear and patient education; for just a single session of patient education, no evidence exists. Surgical interventions can be effective in selected patients, but the evidence base is small. Conclusion The evidence base to support the use of specific self-management and footwear interventions for the prevention of recurrent plantar foot ulcers is quite strong, but is small for the use of other, sometimes widely applied, interventions and is practically nonexistent for the prevention of a first foot ulcer and non-plantar foot ulcer.
Resumo:
Background Flexor tenotomy is a minimally invasive surgical alternative for the treatment of neuropathic diabetic foot ulcers on the distal end of the toe. The influence of infection on healing and time to heal after flexor tenotomy is unknown. Flexor tenotomy can also be used as a prophylactic treatment. The effectiveness as a prophylactic treatment has not been described before. Methods A retrospective study was performed with the inclusion of all consecutive flexor tenotomies from one hospital between January 2005 and December 2011. Results From 38 ulcers, 35 healed (92%), with a mean time to heal of 22 ± 26 days. The longest duration for healing was found for infected ulcers that were penetrating to bone (35 days; p = .042). Cases of prophylactic flexor tenotomies (n=9) did not result in any ulcer or other complications during follow-up. Conclusions The results of this study suggest that flexor tenotomy may be beneficial for neuropathic diabetic foot ulcers on the distal end of the toe, with a high healing percentage and a short mean time to heal. Infected ulcers that penetrated to bone took a significantly longer time to heal. Prospective research, to confirm the results of this retrospective study, should be performed.
Resumo:
In this 'Summary Guidance for Daily Practice', we describe the basic principles of prevention and management of foot problems in persons with diabetes. This summary is based on the International Working Group on the Diabetic Foot (IWGDF) Guidance 2015. There are five key elements that underpin prevention of foot problems: (1) identification of the at-risk foot; (2) regular inspection and examination of the at-risk foot; (3) education of patient, family and healthcare providers; (4) routine wearing of appropriate footwear, and; (5) treatment of pre-ulcerative signs. Healthcare providers should follow a standardized and consistent strategy for evaluating a foot wound, as this will guide further evaluation and therapy. The following items must be addressed: type, cause, site and depth, and signs of infection. There are seven key elements that underpin ulcer treatment: (1) relief of pressure and protection of the ulcer; (2) restoration of skin perfusion; (3) treatment of infection; (4) metabolic control and treatment of co-morbidity; (5) local wound care; (6) education for patient and relatives, and; (7) prevention of recurrence. Finally, successful efforts to prevent and manage foot problems in diabetes depend upon a well-organized team, using a holistic approach in which the ulcer is seen as a sign of multi-organ disease, and integrating the various disciplines involved.
Resumo:
Objective The objective of this study was to investigate the risk of chronic kidney disease (CKD) stage 4-5 and dialysis treatment on incidence of foot ulceration and major lower extremity amputation in comparison to CKD stage 3. Methods In this retrospective study, all individuals who visited our hospital between 2006 and 2012 because of CKD stages 3 to 5 or dialysis treatment were included. Medical records were reviewed for incidence of foot ulceration and major amputation. The time from CKD 3, CKD 4-5, and dialysis treatment until first foot ulceration and first major lower extremity amputation was calculated and analyzed by Kaplan-Meier curves and multivariate Cox proportional hazards model. Diabetes mellitus, peripheral arterial disease, peripheral neuropathy, and foot deformities were included for potential confounding. Results A total of 669 individuals were included: 539 in CKD 3, 540 in CKD 4-5, and 259 in dialysis treatment (individuals could progress from one group to the next). Unadjusted foot ulcer incidence rates per 1000 patients per year were 12 for CKD 3, 47 for CKD 4-5, and 104 for dialysis (P < .001). In multivariate analyses, the hazard ratio for incidence of foot ulceration was 4.0 (95% confidence interval [CI], 2.6-6.3) in CKD 4-5 and 7.6 (95% CI, 4.8-12.1) in dialysis treatment compared with CKD 3. Hazard ratios for incidence of major amputation were 9.5 (95% CI, 2.1-43.0) and 15 (95% CI, 3.3-71.0), respectively. Conclusions CKD 4-5 and dialysis treatment are independent risk factors for foot ulceration and major amputation compared with CKD 3. Maximum effort is needed in daily clinical practice to prevent foot ulcers and their devastating consequences in all individuals with CKD 4-5 or dialysis treatment.
Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis
Resumo:
Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with Bsplines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained.
Resumo:
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Resumo:
Background Patients with diabetic foot disease require frequent screening to prevent complications and may be helped through telemedical home monitoring. Within this context, the goal was to determine the validity and reliability of assessing diabetic foot infection using photographic foot imaging and infrared thermography. Subjects and Methods For 38 patients with diabetes who presented with a foot infection or were admitted to the hospital with a foot-related complication, photographs of the plantar foot surface using a photographic imaging device and temperature data from six plantar regions using an infrared thermometer were obtained. A temperature difference between feet of > 2.2 °C defined a ''hotspot.'' Two independent observers assessed each foot for presence of foot infection, both live (using the Perfusion-Extent-Depth- Infection-Sensation classification) and from photographs 2 and 4 weeks later (for presence of erythema and ulcers). Agreement in diagnosis between live assessment and (the combination of ) photographic assessment and temperature recordings was calculated. Results Diagnosis of infection from photographs was specific (> 85%) but not very sensitive (< 60%). Diagnosis based on hotspots present was sensitive (> 90%) but not very specific (<25%). Diagnosis based on the combination of photographic and temperature assessments was both sensitive (> 60%) and specific (> 79%). Intra-observer agreement between photographic assessments was good (Cohen's j = 0.77 and 0.52 for both observers). Conclusions Diagnosis of foot infection in patients with diabetes seems valid and reliable using photographic imaging in combination with infrared thermography. This supports the intended use of these modalities for the home monitoring of high-risk patients with diabetes to facilitate early diagnosis of signs of foot infection.
Resumo:
Recommendations - 1 To identify a person with diabetes at risk for foot ulceration, examine the feet annually to seek evidence for signs or symptoms of peripheral neuropathy and peripheral artery disease. (GRADE strength of recommendation: strong; Quality of evidence: low) - 2 In a person with diabetes who has peripheral neuropathy, screen for a history of foot ulceration or lower-extremity amputation, peripheral artery disease, foot deformity, pre-ulcerative signs on the foot, poor foot hygiene and ill-fitting or inadequate footwear. (Strong; Low) - 3 Treat any pre-ulcerative sign on the foot of a patient with diabetes. This includes removing callus, protecting blisters and draining when necessary, treating ingrown or thickened toe nails, treating haemorrhage when necessary and prescribing antifungal treatment for fungal infections. (Strong; Low) - 4 To protect their feet, instruct an at-risk patient with diabetes not to walk barefoot, in socks only, or in thin-soled standard slippers, whether at home or when outside. (Strong; Low) - 5 Instruct an at-risk patient with diabetes to daily inspect their feet and the inside of their shoes, daily wash their feet (with careful drying particularly between the toes), avoid using chemical agents or plasters to remove callus or corns, use emollients to lubricate dry skin and cut toe nails straight across. (Weak; Low) - 6 Instruct an at-risk patient with diabetes to wear properly fitting footwear to prevent a first foot ulcer, either plantar or non-plantar, or a recurrent non-plantar foot ulcer. When a foot deformity or a pre-ulcerative sign is present, consider prescribing therapeutic shoes, custom-made insoles or toe orthosis. (Strong; Low) - 7 To prevent a recurrent plantar foot ulcer in an at-risk patient with diabetes, prescribe therapeutic footwear that has a demonstrated plantar pressure-relieving effect during walking (i.e. 30% relief compared with plantar pressure in standard of care therapeutic footwear) and encourage the patient to wear this footwear. (Strong; Moderate) - 8 To prevent a first foot ulcer in an at-risk patient with diabetes, provide education aimed at improving foot care knowledge and behaviour, as well as encouraging the patient to adhere to this foot care advice. (Weak; Low) - 9 To prevent a recurrent foot ulcer in an at-risk patient with diabetes, provide integrated foot care, which includes professional foot treatment, adequate footwear and education. This should be repeated or re-evaluated once every 1 to 3 months as necessary. (Strong; Low) - 10 Instruct a high-risk patient with diabetes to monitor foot skin temperature at home to prevent a first or recurrent plantar foot ulcer. This aims at identifying the early signs of inflammation, followed by action taken by the patient and care provider to resolve the cause of inflammation. (Weak; Moderate) - 11 Consider digital flexor tenotomy to prevent a toe ulcer when conservative treatment fails in a high-risk patient with diabetes, hammertoes and either a pre-ulcerative sign or an ulcer on the distal toe. (Weak; Low) - 12 Consider Achilles tendon lengthening, joint arthroplasty, single or pan metatarsal head resection, or osteotomy to prevent a recurrent foot ulcer when conservative treatment fails in a high-risk patient with diabetes and a plantar forefoot ulcer. (Weak; Low) - 13 Do not use a nerve decompression procedure in an effort to prevent a foot ulcer in an at-risk patient with diabetes, in preference to accepted standards of good quality care. (Weak; Low)
Resumo:
Diabetic foot ulceration poses a heavy burden on the patient and the healthcare system, but prevention thereof receives little attention. For every euro spent on ulcer prevention, ten are spent on ulcer healing, and for every randomized controlled trial conducted on prevention, ten are conducted on healing. In this article, we argue that a shift in priorities is needed. For the prevention of a first foot ulcer, we need more insight into the effect of interventions and practices already applied globally in many settings. This requires systematic recording of interventions and outcomes, and well-designed randomized controlled trials that include analysis of cost-effectiveness. After healing of a foot ulcer, the risk of recurrence is high. For the prevention of a recurrent foot ulcer, home monitoring of foot temperature, pressure-relieving therapeutic footwear, and certain surgical interventions prove to be effective. The median effect size found in a total of 23 studies on these interventions is large, over 60%, and further increases when patients are adherent to treatment. These interventions should be investigated for efficacy as a state-of-the-art integrated foot care approach, where attempts are made to assure treatment adherence. Effect sizes of 75-80% may be expected. If such state-of-the-art integrated foot care is implemented, the majority of problems with foot ulcer recurrence in diabetes can be resolved. It is therefore time to act and to set a new target in diabetic foot care. This target is to reduce foot ulcer incidence with at least 75%.
Resumo:
Foot problems complicating diabetes are a source of major patient suffering and societal costs. Investing in evidence-based, internationally appropriate diabetic foot care guidance is likely among the most cost-effective forms of healthcare expenditure, provided it is goal-focused and properly implemented. The International Working Group on the Diabetic Foot (IWGDF) has been publishing and updating international Practical Guidelines since 1999. The 2015 updates are based on systematic reviews of the literature, and recommendations are formulated using the Grading of Recommendations Assessment Development and Evaluation system. As such, we changed the name from 'Practical Guidelines' to 'Guidance'. In this article we describe the development of the 2015 IWGDF Guidance documents on prevention and management of foot problems in diabetes. This Guidance consists of five documents, prepared by five working groups of international experts. These documents provide guidance related to foot complications in persons with diabetes on: prevention; footwear and offloading; peripheral artery disease; infections; and, wound healing interventions. Based on these five documents, the IWGDF Editorial Board produced a summary guidance for daily practice. The resultant of this process, after reviewed by the Editorial Board and by international IWGDF members of all documents, is an evidence-based global consensus on prevention and management of foot problems in diabetes. Plans are already under way to implement this Guidance. We believe that following the recommendations of the 2015 IWGDF Guidance will almost certainly result in improved management of foot problems in persons with diabetes and a subsequent worldwide reduction in the tragedies caused by these foot problems.
Resumo:
Tarkastelen pro gradu -tutkielmassani naiskysymystä Seitsemännen päivän adventtikirkon oppiäiti Ellen Whiten (1827 1915) terveysopetuksessa. White tunnetaan ennen kaikkea näyistään, joiden välityksellä hän koki saavansa Jumalalta hyvinvointiin liittyviä ohjeita. White kirjoitti näkyjensä innoittama terveysoppaita ja julisti pääasiassa Yhdysvalloissa yli 70 vuotta. Päälähteenäni ovat kaksi Whiten omaelämäkertaa vuosilta 1880 ja 1915 sekä 83 artikkelia, jotka hän julkaisi adventistien johtavassa terveyslehdessä, Health Reformerissa, vuosina 1866 1878. Tutkimuskysymykseni ovat, miksi White osoitti lähes kaiken terveyteen liittyvän opetuksensa naisille ja miten hän ymmärsi terveyden osana naisen roolia ja tehtäviä. Tulkintani mukaan White julisti naisille, sillä hän uskoi, että naisen asema oli selkeytettävä. Yhdysvallat teollistui ja kaupungistui nopeasti 1800-luvulla, mikä aiheutti naisille taloudellisia, sosiaalisia ja terveyteen liittyviä ongelmia. Lisäksi toinen suuri herätys (1800 1830) synnytti keskustelua naisen roolista. Monet kirkot antoivat naisille luvan esimerkiksi saarnaamiseen, mutta Yhdysvalloissa vahvistui samaan aikaan myös käsitys naisesta kodin uskonnollisena johtajana. Ymmärrän, että Whiten mukaan ratkaisu naisen sekavaan asemaan oli terveys. Uskon, että Whiten mukaan nainen pystyi ottamaan oman paikkansa yhteiskunnassa, mikäli hän pysyi terveenä ja oppi tuntemaan terveyden periaatteet. Toisaalta White sai vaikutteita naisten yhteiskunnallisten oikeuksien puolustajilta. He ajattelivat, että vain koulutettu ja terve nainen kykeni vapautumaan avioliitosta. Toisaalta White oli naisasianaisia maltillisempi. Hän ymmärsi, että vain terve ja terveyskoulutuksen saanut nainen saattoi olla hyvä äiti. Ellen White osallistui terveysopetuksellaan keskusteluun myös naisen uskonnollisesta roolista. White oli itse kiertelevä terveyssaarnaaja. Silti hän ymmärsi, että muiden naisten kutsumus oli olla terve ja koulutettu äiti. White korosti äitien pyhyyttä luultavasti siksi, että hän pyrki turvaamaan oman auktoriteettiasemansa Adventtikirkossa. White myös luultavasti ymmärsi roolinsa ja tehtävänsä poikkeuksellisiksi ja arvosti vilpittömästi äitiyttä. Whiten mukaan äidin tehtävä oli kasvattaa terveitä ja moraalisia kansalaisia. Tehtävän arvon hän perusteli aikansa tieteellisillä teorioilla. White korosti luonnontieteilijä Charles Darwinin (1809 1882) evoluutioteorian mukaisesti, että äidin velvollisuus oli siirtää lapsilleen hyvä terveys. Käsityksensä terveyden ja moraalin suhteesta hän selitti frenologialla, jonka mukaan ihmisen elämäntavat vaikuttivat hänen luonteenpiirteisiinsä. White oli myös todennäköisesti kiinnostunut sosiaalitieteilijä Herbert Spencerin (1820 1903) ajatuksista, joiden mukaan kansalaisten kehittyessä myös yhteiskunta jalostui yhä paremmaksi. Vaikka White perusteli opetustaan modernilla tieteellä, hän oli ennen kaikkea uskonnollinen julistaja. Hän kuului 1840-luvulla herätyssaarnaaja William Millerin (1782 1849) liikkeeseen, jonka jäsenet uskoivat, että Jumala tuhoaa Yhdysvallat viimeisellä tuomiolla, mikäli kansan moraalin tila ei nopeasti kohene. Millerin liikkeen painotukset säilyivät Adventtikirkossa, joka perustettiin vuonna 1863. Siten White ymmärsi, ettei äiti ollut vastuussa vain perheensä ja kansansa maallisesta hyvinvoinnista vaan myös heidän pelastuksestaan. Whiten käsitys äidistä on mielestäni ristiriitainen. White antoi äideille paljon valtaa, mutta myös suuren vastuun. Hän korosti äitien arvokkuutta, mutta toisaalta he eivät olleet hänen mukaansa korvaamattomia. White ei myöskään huomioinut naisia, jotka eivät olleet äitejä.
Resumo:
Background Several prospective studies have suggested that gait and plantar pressure abnormalities secondary to diabetic peripheral neuropathy contributes to foot ulceration. There are many different methods by which gait and plantar pressures are assessed and currently there is no agreed standardised approach. This study aimed to describe the methods and reproducibility of three-dimensional gait and plantar pressure assessments in a small subset of participants using pre-existing protocols. Methods Fourteen participants were conveniently sampled prior to a planned longitudinal study; four patients with diabetes and plantar foot ulcers, five patients with diabetes but no foot ulcers and five healthy controls. The repeatability of measuring key biomechanical data was assessed including the identification of 16 key anatomical landmarks, the measurement of seven leg dimensions, the processing of 22 three-dimensional gait parameters and the analysis of four different plantar pressures measures at 20 foot regions. Results The mean inter-observer differences were within the pre-defined acceptable level (<7 mm) for 100 % (16 of 16) of key anatomical landmarks measured for gait analysis. The intra-observer assessment concordance correlation coefficients were > 0.9 for 100 % (7 of 7) of leg dimensions. The coefficients of variations (CVs) were within the pre-defined acceptable level (<10 %) for 100 % (22 of 22) of gait parameters. The CVs were within the pre-defined acceptable level (<30 %) for 95 % (19 of 20) of the contact area measures, 85 % (17 of 20) of mean plantar pressures, 70 % (14 of 20) of pressure time integrals and 55 % (11 of 20) of maximum sensor plantar pressure measures. Conclusion Overall, the findings of this study suggest that important gait and plantar pressure measurements can be reliably acquired. Nearly all measures contributing to three-dimensional gait parameter assessments were within predefined acceptable limits. Most plantar pressure measurements were also within predefined acceptable limits; however, reproducibility was not as good for assessment of the maximum sensor pressure. To our knowledge, this is the first study to investigate the reproducibility of several biomechanical methods in a heterogeneous cohort.
Resumo:
Background The estimated likelihood of lower limb amputation is 10 to 30 times higher amongst people with diabetes compared to those without diabetes. Of all non-traumatic amputations in people with diabetes, 85% are preceded by a foot ulcer. Foot ulceration associated with diabetes (diabetic foot ulcers) is caused by the interplay of several factors, most notably diabetic peripheral neuropathy (DPN), peripheral arterial disease (PAD) and changes in foot structure. These factors have been linked to chronic hyperglycaemia (high levels of glucose in the blood) and the altered metabolic state of diabetes. Control of hyperglycaemia may be important in the healing of ulcers. Objectives To assess the effects of intensive glycaemic control compared to conventional control on the outcome of foot ulcers in people with type 1 and type 2 diabetes. Search methods In December 2015 we searched: The Cochrane Wounds Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; EBSCO CINAHL; Elsevier SCOPUS; ISI Web of Knowledge Web of Science; BioMed Central and LILACS. We also searched clinical trial databases, pharmaceutical trial databases and current international and national clinical guidelines on diabetes foot management for relevant published, non-published, ongoing and terminated clinical trials. There were no restrictions based on language or date of publication or study setting. Selection criteria Published, unpublished and ongoing randomised controlled trials (RCTs) were considered for inclusion where they investigated the effects of intensive glycaemic control on the outcome of active foot ulcers in people with diabetes. Non randomised and quasi-randomised trials were excluded. In order to be included the trial had to have: 1) attempted to maintain or control blood glucose levels and measured changes in markers of glycaemic control (HbA1c or fasting, random, mean, home capillary or urine glucose), and 2) documented the effect of these interventions on active foot ulcer outcomes. Glycaemic interventions included subcutaneous insulin administration, continuous insulin infusion, oral anti-diabetes agents, lifestyle interventions or a combination of these interventions. The definition of the interventional (intensive) group was that it should have a lower glycaemic target than the comparison (conventional) group. Data collection and analysis All review authors independently evaluated the papers identified by the search strategy against the inclusion criteria. Two review authors then independently reviewed all potential full-text articles and trials registry results for inclusion. Main results We only identified one trial that met the inclusion criteria but this trial did not have any results so we could not perform the planned subgroup and sensitivity analyses in the absence of data. Two ongoing trials were identified which may provide data for analyses in a later version of this review. The completion date of these trials is currently unknown. Authors' conclusions The current review failed to find any completed randomised clinical trials with results. Therefore we are unable to conclude whether intensive glycaemic control when compared to conventional glycaemic control has a positive or detrimental effect on the treatment of foot ulcers in people with diabetes. Previous evidence has however highlighted a reduction in risk of limb amputation (from various causes) in people with type 2 diabetes with intensive glycaemic control. Whether this applies to people with foot ulcers in particular is unknown. The exact role that intensive glycaemic control has in treating foot ulcers in multidisciplinary care (alongside other interventions targeted at treating foot ulcers) requires further investigation.
Resumo:
Objective: To systematically review studies reporting the prevalence in general adult inpatient populations of foot disease disorders (foot wounds, foot infections, collective ‘foot disease’) and risk factors (peripheral arterial disease (PAD), peripheral neuropathy (PN), foot deformity). Methods: A systematic review of studies published between 1980 and 2013 was undertaken using electronic databases (MEDLINE, EMBASE and CINAHL). Keywords and synonyms relating to prevalence, inpatients, foot disease disorders and risk factors were used. Studies reporting foot disease or risk factor prevalence data in general inpatient populations were included. Included study's reference lists and citations were searched and experts consulted to identify additional relevant studies. 2 authors, blinded to each other, assessed the methodological quality of included studies. Applicable data were extracted by 1 author and checked by a second author. Prevalence proportions and SEs were calculated for all included studies. Pooled prevalence estimates were calculated using random-effects models where 3 eligible studies were available. Results: Of the 4972 studies initially identified, 78 studies reporting 84 different cohorts (total 60 231 517 participants) were included. Foot disease prevalence included: foot wounds 0.01–13.5% (70 cohorts), foot infections 0.05–6.4% (7 cohorts), collective foot disease 0.2–11.9% (12 cohorts). Risk factor prevalence included: PAD 0.01–36.0% (10 cohorts), PN 0.003–2.8% (6 cohorts), foot deformity was not reported. Pooled prevalence estimates were only able to be calculated for pressure ulcer-related foot wounds 4.6% (95% CI 3.7% to 5.4%)), diabetes-related foot wounds 2.4% (1.5% to 3.4%), diabetes-related foot infections 3.4% (0.2% to 6.5%), diabetes-related foot disease 4.7% (0.3% to 9.2%). Heterogeneity was high in all pooled estimates (I2=94.2–97.8%, p<0.001). Conclusions: This review found high heterogeneity, yet suggests foot disease was present in 1 in every 20 inpatients and a major risk factor in 1 in 3 inpatients. These findings are likely an underestimate and more robust studies are required to provide more precise estimates.