900 resultados para Fluoride gels
Resumo:
Cells are able to detect and respond to mechanical cues from their environment. Previous studies have investigated this mechanosensitivity on various cell types, including neural cells such as astrocytes. In this study, we have carefully optimized polyacrylamide gels, commonly used as compliant growth substrates, considering their homogeneity in surface topography, mechanical properties, and coating density, and identified several potential pitfalls for the purpose of mechanosensitivity studies. The resulting astrocyte response to growth on substrates with shear storage moduli of G` = 100 Pa and G` = 10 kPa was then evaluated as a function of coating density of poly-D-lysine using quantitative morphometric analysis. Astrocytes cultured on stiff substrates showed significantly increased perimeter, area, diameter, elongation, number of extremities and overall complexity if compared to those cultured on compliant substrates. A statistically significant difference in the overall morphological score was confirmed with an artificial intelligence-based shape analysis. The dependence of the cells` morphology on PDL coating density seemed to be weak compared to the effect of the substrate stiffness and was slightly biphasic, with a maximum at 10-100 mu g ml(-1) PDL concentration. Our finding suggests that the compliance of the surrounding tissue in vivo may influence astrocyte morphology and behavior.
Resumo:
The local structure of an ion-conducting glass with nominal composition 50B(2)O(3)-10PbO-40LiF has been investigated by complementary (7)Li, (11)B, (19)F, and (207)Pb single- and double-resonance experiments. The results give insight into the structural role of the lithium fluoride additive in borate glasses: (1) LiF is seen to actively participate in the network transformation process contributing to the conversion of three- into four-coordinate boron units, as shown by (11)B single-resonance as well as by (11)B{(19)F} and (19)F{(11)B} double-resonance experiments. (2) (19)F signal quantification experiments suggest substantial fluoride loss, presumably caused by formation of volatile BF(3). A part of the fluoride remains in the dopant role, possibly in the form of small LiF-like cluster domains, which serve as a mobile ion supply. (3) The extent of lithium-fluorine and lead-fluorine interactions has been characterized by (7)Li{(19)F} and (207)Pb{(19)F} REDOR and SEDOR experiments. On the basis of these results, a quantitative structural description of this system has been developed.
Resumo:
Fluorescent AlPO(4) xerogels doped with different amounts of Rhodamine 6G (Rh6G) laser dye were prepared by a one-step sal-gel process. In addition, mesoporous AlPO(4) glasses obtained from undoped gels were loaded with different amounts of Rh6G by wet impregnation. Optical excitation and emission spectra of both series of samples show significant dependences on Rh6G concentration, revealing the influence of dye molecular aggregation. At comparable dye concentrations the aggregation effects are found to be significantly stronger in the gels than in the mesoporous glasses. This effect might be attributed to stronger interactions between the dye molecules and the glass matrix, resulting in more efficient dye dispersion in the latter. The interaction of Rh6G with the glassy AlPO(4) network has been probed by (27)Al and (31)P solid-state NMR techniques. New five- and six-coordinated aluminum environments have been observed and characterized by advanced solid-state NMR techniques probing (27)Al-(1)H and (27)Al-(31)P internuclear dipole couplings. The fractional area of these new Al sites is correlated with the combined fractional area of two new Q(3Al)((0)) and Q(2Al)((0)) phosphate species observed in the (31)P MAS NMR spectra. Based on this correlation as well as detailed composition dependent studies, we suggest that the new signals arise from the breakage of Al-O-P linkages associated with the insertion process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Anomalous concentrations of fluoride in groundwater were identified in 19 drilling wells in the Salto-Indaiatuba region, Sao Paulo State, with an average concentration of 3.03 mg dm(-3) and a maximum of 6.95 mg dm(-3), which constitute a restriction for the water`s usage in terms of human consumption. The wells exploit water from the Tubarao Aquifer (sedimentary, granular) and Crystalline Aquifer (granitic, fractured), used for sanitary or industrial purposes. These groundwaters are typically HCO(3) and HCO(3)-SO(4) types, with high concentrations of HCO(3) -and Na(+) and high pH-values between 7.5 and 10.0. The highest concentrations of F-are associated to the Tubarao and Tubarao/Crystalline aquifer drilling wells. The presence of F-in groundwater is controlled by these high pH-values, alkalinity, and fluorine availability. The source of fluoride in the Tubarao and Crystalline Aquifers can be related to the percolation of hydrothermal fluids associated with Mesozoic lava flow, emplaced due to the opening of Atlantic Ocean and/or hydrolysis of fluorine-rich minerals and clay minerals.
Resumo:
2D electrophoresis is a well-known method for protein separation which is extremely useful in the field of proteomics. Each spot in the image represents a protein accumulation and the goal is to perform a differential analysis between pairs of images to study changes in protein content. It is thus necessary to register two images by finding spot correspondences. Although it may seem a simple task, generally, the manual processing of this kind of images is very cumbersome, especially when strong variations between corresponding sets of spots are expected (e.g. strong non-linear deformations and outliers). In order to solve this problem, this paper proposes a new quadratic assignment formulation together with a correspondence estimation algorithm based on graph matching which takes into account the structural information between the detected spots. Each image is represented by a graph and the task is to find a maximum common subgraph. Successful experimental results using real data are presented, including an extensive comparative performance evaluation with ground-truth data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fluoroacetate is a highly toxic species naturally found in plants and in commercial products (compound 1080) for population control of several undesirable animal species. However, it is non-selective and toxic to many other animals including humans, and thus its detection is very important for forensic purposes. This paper presents a sensitive and fast method for the determination of fluoroacetate in blood serum using capillary electrophoresis with capacitively coupled contactless conductivity detection. Serum blood samples were treated with ethanol to remove proteins. The samples were analyzed in BGE containing 15 mmol/L histidine and 30 mmol/L gluconic acid (pH 3.85). The calibration curve was linear up to 75 mu mol/L (R(2) = 0.9995 for N = 12). The detection limit in the blood serum was 0.15 mg/kg, which is smaller than the lethal dose for humans and other animals. Fluoride, a metabolite of the fluoroacetate defluorination, could also be detected for levels greater than 20 mu mol/L, when polybrene was used for reversion of the EOF. CTAB and didecyldimethylammonium bromide are not useful for this task because of the severe reduction of the fluoride level. However, no interference was observed for fluoroacetate.
Resumo:
Purpose: The aim of this in situ double-blind randomised crossover study was to investigate the effect of calcium (Ca) pre-rinse on the composition of plaque and on enamel prior to the use of fluoride (F) dentifrice. Materials and Methods: During four phases (14 days each) of this study, 10 volunteers had agreed to wear dental appliances containing two healthy bovine enamel blocks. A fresh solution containing 20% weight/volume (w/v) sucrose was dripped on the enamel blocks ex vivo for 5 min three times a day. Subsequently, the appliances were replaced in the mouth, and the volunteers rinsed their mouth with 10 mL of a Ca (150 mmol/L) or a placebo rinse (1 min). In sequence, a slurry (1:3 w/v) of F (1030 ppm) or placebo dentifrice was dripped onto the blocks ex vivo for 1 min. During this time, the volunteers brushed their teeth with the respective dentifrice. The appliances were replaced in the mouth, and the volunteers rinsed their mouth with water. The plaque formed on the blocks was analysed for F and Ca. The enamel demineralisation as well as the incorporation of F on enamel was evaluated by cross-sectional microhardness and alkali-soluble F analysis, respectively. Data were tested using analysis of variance (P < 0.05). Results: The Ca pre-rinse prior to the use of the F dentifrice led to a three- and sixfold increase in the plaque F and Ca concentrations, respectively. It also did not have any additive effect on the F content on the enamel and the demineralisation of the enamel, in comparison with the use of F dentifrice alone. Conclusions: A Ca lactate rinse used prior to the F dentifrice was able to change the mineral content in the plaque, but it was unable to prevent enamel demineralisation.
Resumo:
Uma nova rede de polímeros interpenetrantes (IPN) baseada em poliuretana de óleo de mamona e poli(etileno glicol) e poli(metacrilato de metila) foi preparada para ser utilizada como eletrólito polimérico. Os seguintes parâmetros de polimerização foram avaliados: massa molecular do poli(etileno glicol) (PEG), concentração de PEG e concentração de metacrilato de metila. As membranas de IPN foram caracterizadas por calorimetria diferencial de varredura (DSC) e espectroscopia de infravermelho por transformada de Fourier (FT-IR). Os eletrólitos de redes de polímeros interpenetrantes (IPNE) foram preparados a partir da dopagem com sal de lítio através do inchamento numa solução de 10% em massa de LiClO4 na mistura de carbonato de etileno e carbonato de propileno na razão mássica de 50:50. As IPNEs foram caracterizadas por espectroscopia de impedância eletroquímica e Raman. As IPNEs foram testadas como eletrólito polimérico em supercapacitores. As células capacitivas foram preparadas utilizando eletrodos de polipirrol (PPy). Os valores de capacitância e eficiência foram calculados por impedância eletroquímica, voltametria cíclica e ciclos galvonostáticos de carga e descarga. Os valores de capacitância obtidos foram em torno de 90 F.g-1 e eficiência variou no intervalo de 88 a 99%. Os valores de densidade de potência foram superiores a 250 W.kg-1 enquanto que a densidade de energia variou de 10 a 33 W.h.kg-1, dependendo da composição da IPNE. As características eletroquímicas do eletrólito formado pela IPN-LiClO4 (IPNE) foram comparadas aos eletrólitos poliméricos convencionais, tais como poli(difluoreto de vinilideno)-(hexafluorpropileno) ((PVDF-HFP/LiClO4) e poliuretana comercial (Bayer desmopan 385) (PU385/LiClO4). As condutividades na temperatura ambiente foram da ordem de 10-3 S.cm-1. A capacitância da célula utilizando eletrodos de PPy com eletrólito de PVDFHFP foi de 115 F.g-1 (30 mF.cm-2) e 110 F.g-1 (25 mF.cm-2) para a célula com PU385 comparadas a 90 F.g-1 (20 mF.cm-2) para a IPNE. Os capacitores preparados com eletrólito de IPNE apresentaram valores de capacitância inferior aos demais, entretanto provaram ser mais estáveis e mais resistentes aos ciclos de carga/descarga. A interpenetração de duas redes poliméricas, PU e PMMA produziu um eletrólito com boa estabilidade mecânica e elétrica. Um protótipo de supercapacitor de estado sólido foi produzindo utilizando eletrodos impressos de carbono ativado (PCE) e o eletrólito polimérico de IPNE. A técnica de impressão de carbono possui várias vantagens em relação aos outros métodos de manufatura de eletrodos de carbono, pois a área do eletrodo, espessura e composição são variáveis que podem ser controladas experimentalmente. As células apresentaram uma larga janela eletroquímica (4V) e valores da capacitância da ordem de 113 mF.cm-2 (16 F.g-1). Métodos alternativos de preparação do PCE investigados incluem o uso de IPNE como polímero de ligação ao carbono ativado, estes eletrodos apresentaram valores de capacitância similares aos produzidos com PVDF. A influência do número de camadas de carbono usadas na produção do PCE também foi alvo de estudo. Em relação ao eletrólito polimérico, o plastificante e o sal de lítio foram adicionados durante a síntese, formando a IPNGel. As células apresentaram alta capacitância e boa estabilidade após 4000 ciclos de carga e descarga. As membranas de IPN foram testadas também como reservatório de medicamento em sistemas de transporte transdérmico por iontoforese. Os filmes, mecanicamente estáveis, formaram géis quando inchado em soluções saturadas de lidocaina.HCl, anestésico local, em propileno glicol (PG), poli(etileno glicol) (PEG400) e suas misturas. O grau de inchamento em PG foi de 15% e 35% em PEG400. Agentes químicos de penetração foram utilizados para diminuir a resistência da barreira causada pela pele, dentre eles o próprio PG, a 2-pirrolidinona (E1) e a 1-dodecil-2-pirrolidinona (E2). Os géis foram caracterizados por espectroscopia de impedância eletroquímica e transporte passivo e por iontoforese através de uma membrana artificial (celofane). O sistema IPN/ lidocaina.HCl apresentou uma correlação linear entre medicamento liberado e a corrente aplicada. Os melhores resultados de transporte de medicamento foram obtidos utilizando o PG como solvente.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work reports the synthesis of zeolites with different compositions (pure silica, Si/Ti and Si/Al), via hydroxide and fluoride medium using the cation 1-butyl-3- methylimidazolium as structure directing agent. Initially, the cation was synthesized in chloride form and used for the synthesis in hydroxide medium. An anion-exchange (Cl- for OH-) was required for the synthesis in fluoride medium. Different reactants were used for the formation of gels synthesis, resulting in the crystallization of MFI and TON phases, the latter predominant in many compositions. The cation and synthesized zeolites obtained were characterized by different techniques such as NMR, TG/DTG, XRD, SEM, N2 adsorption and desorption, DRS and EPMA. Besides characterizing the cation and zeolites, the mother liquor of hydroxide synthesis was characterized and it was possible to observe a modification of the cation in the synthesis conditions employed. The materials synthesized in this work can be applied in catalytic reactions and adsorption
Resumo:
The goal of this study was to investigate the ability of fluoride to modulate the genotoxic effects induced by the oxidative agent hydrogen peroxide (H2O2) and the alkylating agent methyl methanesulfonate (MMS) in vitro by the single-cell gel ( comet) assay. Chinese hamster ovary cells were exposed in culture for 1 h at 37 degrees C to sodium fluoride at 7-100 mu g/ml. NaF-treated and control cells were then incubated with 0-10 mu M MMS in phosphate-buffered saline (PBS) for 15 min at 37 degrees C, or 7-100 mu M H2O2 in distilled water for 5 min on ice. Negative control cells were treated with PBS for 1 h at 37 degrees C. Clear concentration-related effects were observed for the two genotoxins. Increase of DNA damage induced by either MMS or H2O2 was not significantly altered by pretreatment with NaF. The data indicate that NaF does not modulate alkylation-induced genotoxicity or oxidative DNA damage as measured by the single-cell gel ( comet) assay. Copyright (c) 2007 S. Karger AG, Basel
Resumo:
Fluoride has been widely used in dentistry because it is an effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury on the genetic apparatus. Genotoxicity tests form an important part of cancer research and risk assessment of potential carcinogens. In the current study, the potential DNA damage associated with exposure to fluoride was assessed by the single cell gel ( comet) assay in peripheral blood, oral mucosa and brain cells in vivo. Male Wistar rats were exposed to sodium fluoride (NaF) at a 0, 7 and 100 ppm dose for drinking water during 6 weeks. The results pointed out that NaF did not contribute to the DNA damage in all cellular types evaluated as depicted by the mean tail moment and tail intensity. These findings are clinically important since they represent an important contribution to the correct evaluation of the potential health risk associated with dental agents exposure. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
Fluoride has been widely used in dentistry as a caries prophylactic agent. However, there has been some speculation that excess fluoride could cause an impact on genome integrity. In the current study, the potential DNA damage associated with exposure to fluoride was assessed in cells of blood, liver, kidney, thyroid gland and urinary bladder by the single cell gel (comet) assay. Male Wistar rats aging 75 days were distributed into seven groups: Groups 1 (control), 2, 3, 4, 5, 6 and 7 received 0 (deionized water), 10, 20, 40, 60, 80 and 100 mgF/Kg body weight from sodium fluoride (NaF), respectively, by gastrogavage. These groups were killed at 2 h after the administration of the fluoride doses. The level of DNA strand breaks did not increase in all organs evaluated and at all doses of NaF tested, as depicted by the mean tail moment. Taken together, our results suggest that oral exposure to NaF did not result in systemic genotoxic effect in multiple organs related to fluoride toxicity. Since DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risk associated with chemical exposure.
Resumo:
The present article describes the preparation and characterization A anionic Collagen gels obtained from porcine intestinal submucosa after 72 h of alkaline treatment and in the form of rhamsan composites to develop injectable biomaterials for plastic for construction. All materials were characterized by SDS/polyacrylamide gel electrophoresis, infrared spectroscopy, thermal stability, potentiometric titration, rheological properties, and fluidity tests. Biocompatibility was appraised after the injection of anionic collagen:rhamsan composites at 2.5% in 60 North Folk rabbits. Independently of processing, the Collagen's secondary structure was preserved in all cases, and after 72 h of hydrolysis the Collagen was characterized by a carboxyl group content of 346 :L 9, which, at physiological pH, corresponds to an increase of 106 17 negative charges, in comparison to native Collagen, due to the selective hydrolysis of asparagine and glutamine carboxyamide side chain. Rheological studies of composites at pH 7.4 in concentrations of 2, 4, and 6% (in proportions of 75:1 and 50:1) showed a viscoelastic behavior dependent on the frequency, which is independent of concentration and proportion. In both, the concentration of the storage modulus always predominated over the loss modulus (G' > G and delta < 45 degrees). The results from creep experiments confirmed this behavior and showed that anionic collagen:rhamsan composites at pH 7.4 in the proportion of 50:1 are less elastic and more susceptible to deformation in comparison to gels in the proportion of 75:1, independent of concentration. This was further confirmed by flow experiments, indicating that the necessary force for the extrusion of anionic collagen:rhamsan composites, in comparison to anionic Collagen, was significantly smaller and with a smooth flow. Biocompatibility studies showed that the tissue reaction of anionic collagen:rhamsan composites at 2.5% in the proportion of 75:1 was compatible with the application of these gels in plastic reconstruction. These results suggest that the association of Collagen with rhamsan may be a good alternative in the replacement of glutaraidehyde to stabilize the microfibril assembly of commercial Collagen gel preparations. (c) 2005 Wiley Periodicals, Inc.