921 resultados para Finite-element-method
Resumo:
Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very difficult to predict its propagation in the human body so many times it is referred as an unsolved history. The treatments for this disorder are to remove the cystic substance from the nerve by a surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to the treatment, ligation of articular branch results into foolproof eradication of the deficit. Mechanical modeling of the affected nerve cross section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in research report have the capability to simulate large deformation. The results obtained from this research shows significant deformation as compared to the deformation observed in the conventional finite element models. The report elaborates the neurological deficit followed by detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show the large deformation in stages and also the successful implementation of the SPH method for the large deformation of the biological organ like the Intra-neural ganglion cyst.
Resumo:
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.
Resumo:
We propose a novel finite element formulation that significantly reduces the number of degrees of freedom necessary to obtain reasonably accurate approximations of the low-frequency component of the deformation in boundary-value problems. In contrast to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie algebra—the logarithmic space—of the deformation function. We construct a deformation function based on an interpolation of transformations at the nodes of the finite element. In the case of the geometrically exact planar Bernoulli beam element presented in this work, these transformation functions at the nodes are given as rotations. However, due to an intrinsic coupling between rotational and translational components of the deformation function, the formulation provides for a good approximation of the deflection of the beam, as well as of the resultant forces and moments. As both the translational and the rotational components of the deformation function are defined on the logarithmic space, we propose to refer to the novel approach as the “Logarithmic finite element method”, or “LogFE” method.
An FETI-preconditioned conjuerate gradient method for large-scale stochastic finite element problems
Resumo:
In the spectral stochastic finite element method for analyzing an uncertain system. the uncertainty is represented by a set of random variables, and a quantity of Interest such as the system response is considered as a function of these random variables Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic system of equations becomes rapidly challenging when the size of the physical system and/or the level of uncertainty is increased This paper addresses this challenge by presenting a preconditioned conjugate gradient method for such block systems where the preconditioning step is based on the dual-primal finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary performance results on a Linux Cluster suggest that the proposed Solution method is numerically scalable and demonstrate its potential for making the uncertainty quantification Of realistic systems tractable.
Resumo:
Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution), which requires only three inputs, namely the solid metal concentration, saturation concentration of the dissolved metal ions and diffusion coefficient. A combined eXtended Finite Element Model (XFEM) and level set method is developed in this paper. The extended finite element model handles the jump discontinuity in the metal concentrations at the interface, by using discontinuous-derivative enrichment formulation for concentration discontinuity at the interface. This eliminates the requirement of using front conforming mesh and re-meshing after each time step as in conventional finite element method. A numerical technique known as level set method tracks the position of the moving interface and updates it over time. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed method is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions.
Resumo:
Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution). The interface experiences a jump discontinuity in metal concentration. The extended finite-element model (XFEM) handles this jump discontinuity by using discontinuous-derivative enrichment formulation, eliminating the requirement of using front conforming mesh and re-meshing after each time step as in the conventional finite-element method. However, prior interface location is required so as to solve the governing equations for concentration field for which a numerical technique, the level set method, is used for tracking the interface explicitly and updating it over time. The level set method is chosen as it is independent of shape and location of the interface. Thus, a combined XFEM and level set method is developed in this paper. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed model is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions. An empirical model for pitting potential is also derived based on the finite-element results. Studies show that pitting profile depends on factors such as ion concentration, solution pH and temperature to a large extent. Studying the individual and combined effects of these factors on pitting potential is worth knowing, as pitting potential directly influences corrosion rate.
Resumo:
Surface temperature measurements from two discs of a gas turbine compressor rig are used as boundary conditions for the transient conduction solution (inverse heat transfer analysis). The disc geometry is complex, and so the finite element method is used. There are often large radial temperature gradients on the discs, and the equations are therefore solved taking into account the dependence of thermal conductivity on temperature. The solution technique also makes use of a multigrid algorithm to reduce the solution time. This is particularly important since a large amount of data must be analyzed to obtain correlations of the heat transfer. The finite element grid is also used for a network analysis to calculate the radiant heat transfer in the cavity formed between the two compressor discs. The work discussed here proved particularly challenging as the disc temperatures were only measured at four different radial locations. Four methods of surface temperature interpolation are examined, together with their effect on the local heat fluxes. It is found that the choice of interpolation method depends on the available number of data points. Bessel interpolation gives the best results for four data points, whereas cubic splines are preferred when there are considerably more data points. The results from the analysis of the compressor rig data show that the heat transfer near the disc inner radius appears to be influenced by the central throughflow. However, for larger radii, the heat transfer from the discs and peripheral shroud is found to be consistent with that of a buoyancy-induced flow.
Resumo:
An improved mesoscopic model is presented for simulating the drying of porous media. The aim of this model is to account for two scales simultaneously: the scale of the whole product and the scale of the heterogeneities of the porous medium. The innovation of this method is the utilization of a new mass-conservative scheme based on the Control-Volume Finite-Element (CV-FE) method that partitions the moisture content field over the individual sub-control volumes surrounding each node within the mesh. Although the new formulation has potential for application across a wide range of transport processes in heterogeneous porous media, the focus here is on applying the model to the drying of small sections of softwood consisting of several growth rings. The results conclude that, when compared to a previously published scheme, only the new mass-conservative formulation correctly captures the true moisture content evolution in the earlywood and latewood components of the growth rings during drying.
Resumo:
There are many continuum mechanical models have been developed such as liquid drop models, solid models, and so on for single living cell biomechanics studies. However, these models do not give a fully approach to exhibit a clear understanding of the behaviour of single living cells such as swelling behaviour, drag effect, etc. Hence, the porohyperelastic (PHE) model which can capture those aspects would be a good candidature to study cells behaviour (e.g. chondrocytes in this study). In this research, an FEM model of single chondrocyte cell will be developed by using this PHE model to simulate Atomic Force Microscopy (AFM) experimental results with the variation of strain rate. This material model will be compared with viscoelastic model to demonstrate the advantages of PHE model. The results have shown that the maximum value of force applied of PHE model is lower at lower strain rates. This is because the mobile fluid does not have enough time to exude in case of very high strain rate and also due to the lower permeability of the membrane than that of the protoplasm of chondrocyte. This behavior is barely observed in viscoelastic model. Thus, PHE model is the better model for cell biomechanics studies.
Resumo:
We present a rigorous validation of the analytical Amadei solution for the stress concentration around an arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients b11 and b55 are not equal. It is shown from theoretical considerations and published experimental data that the b11 and b55 are not equal for realistic rocks. Second, we develop a 3D finite element elastic model within a hybrid analytical–numerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic, transverse isotropic and orthorhombic symmetries. It is concluded that the analytical Amadei solution is valid with no restriction on the borehole orientation or the symmetry of the elastic anisotropy.
Resumo:
A new cold-formed and resistance welded section known as the Hollow Flange Beam (HFB) has been developed recently in Australia. In contrast to the common lateral torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite element analyses and large scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite element model and analytical results. The experimental procedure and results are outlined in a companion paper at this conference.
Resumo:
A new cold-formed and resistance-welded section known as the hollow flange beam (HFB) has been developed recently in Australia. In contrast to the common lateral-torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral-distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral-distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite-element analyses and large-scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite-element model and analytical results. The experimental procedure and results are outlined in a companion paper.
Resumo:
Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load-displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.