939 resultados para Finite dimensional spaces
Resumo:
This dissertation concerns convergence analysis for nonparametric problems in the calculus of variations and sufficient conditions for weak local minimizer of a functional for both nonparametric and parametric problems. Newton's method in infinite-dimensional space is proved to be well-defined and converges quadratically to a weak local minimizer of a functional subject to certain boundary conditions. Sufficient conditions for global converges are proposed and a well-defined algorithm based on those conditions is presented and proved to converge. Finite element discretization is employed to achieve an implementable line-search-based quasi-Newton algorithm and a proof of convergence of the discretization of the algorithm is included. This work also proposes sufficient conditions for weak local minimizer without using the language of conjugate points. The form of new conditions is consistent with the ones in finite-dimensional case. It is believed that the new form of sufficient conditions will lead to simpler approaches to verify an extremal as local minimizer for well-known problems in calculus of variations.
Resumo:
We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.
Resumo:
Let X be an in�finite-dimensional complex Banach space. Very recently, several results on the existence of entire functions on X bounded on a given ball B1 � X and unbounded on another given ball B2 � X have been obtained. In this paper we consider the problem of �finding entire functions which are uniformly bounded on a collection of balls and unbounded on the balls of some other collection. RESUMEN. Sea X un espacio de Banach complejo de dimensión infinita. En este trabajo, los autores estudian el problema de encontrar una función entera en X que esté uniformemente acotada en una colección de de bolas en X y que no esté acotada en las bolas de otra colección.
Resumo:
We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).
Resumo:
Representations of the superalgebra osp(2/2)(k)((1)) and current superalgebra. osp(2/2)k in the standard basis are investigated. All finite-dimensional typical and atypical representations of osp(2/2) are constructed by the vector coherent state method. Primary fields of the non-unitary conformal field theory associated with osp(2/2)(k)((1)) in the standard basis are obtained for arbitrary level k. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The concept of biperfect (noncocommutative) weak Hopf algebras is introduced and their properties are discussed. A new type of quasi-bicrossed products is constructed by means of weak Hopf skew-pairs of the weak Hopf algebras which are generalizations of the Hopf pairs introduced by Takeuchi. As a special case, the quantum double of a finite dimensional biperfect (noncocommutative) weak Hopf algebra is built. Examples of quantum doubles from a Clifford monoid as well as a noncommutative and noncocommutative weak Hopf algebra are given, generalizing quantum doubles from a group and a noncommutative and noncocommutative Hopf algebra, respectively. Moreover, some characterizations of quantum doubles of finite dimensional biperfect weak Hopf algebras are obtained. (C) 2004 American Institute of Physics.
Resumo:
When can a quantum system of finite dimension be used to simulate another quantum system of finite dimension? What restricts the capacity of one system to simulate another? In this paper we complete the program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary control. By entangling we mean that every qudit is coupled to every other qudit, at least indirectly. We demonstrate that the only class of finite-dimensional entangling Hamiltonians that are not universal for simulation is the class of entangling Hamiltonians on qubits whose Pauli operator expansion contains only terms coupling an odd number of systems, as identified by Bremner [Phys. Rev. A 69, 012313 (2004)]. We show that in all other cases entangling many-qudit Hamiltonians are universal for simulation.
Resumo:
The non-semisimple gl(2)k current superalgebra in the standard basis and the corresponding non-unitary conformal field theory are investigated. Infinite families of primary fields corresponding to all finite-dimensional irreducible typical and atypical representations of gl(212) and three (two even and one odd) screening currents of the first kind are constructed explicitly in terms of ten free fields. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Neural networks are usually curved statistical models. They do not have finite dimensional sufficient statistics, so on-line learning on the model itself inevitably loses information. In this paper we propose a new scheme for training curved models, inspired by the ideas of ancillary statistics and adaptive critics. At each point estimate an auxiliary flat model (exponential family) is built to locally accommodate both the usual statistic (tangent to the model) and an ancillary statistic (normal to the model). The auxiliary model plays a role in determining credit assignment analogous to that played by an adaptive critic in solving temporal problems. The method is illustrated with the Cauchy model and the algorithm is proved to be asymptotically efficient.
Resumo:
This thesis describes the Generative Topographic Mapping (GTM) --- a non-linear latent variable model, intended for modelling continuous, intrinsically low-dimensional probability distributions, embedded in high-dimensional spaces. It can be seen as a non-linear form of principal component analysis or factor analysis. It also provides a principled alternative to the self-organizing map --- a widely established neural network model for unsupervised learning --- resolving many of its associated theoretical problems. An important, potential application of the GTM is visualization of high-dimensional data. Since the GTM is non-linear, the relationship between data and its visual representation may be far from trivial, but a better understanding of this relationship can be gained by computing the so-called magnification factor. In essence, the magnification factor relates the distances between data points, as they appear when visualized, to the actual distances between those data points. There are two principal limitations of the basic GTM model. The computational effort required will grow exponentially with the intrinsic dimensionality of the density model. However, if the intended application is visualization, this will typically not be a problem. The other limitation is the inherent structure of the GTM, which makes it most suitable for modelling moderately curved probability distributions of approximately rectangular shape. When the target distribution is very different to that, theaim of maintaining an `interpretable' structure, suitable for visualizing data, may come in conflict with the aim of providing a good density model. The fact that the GTM is a probabilistic model means that results from probability theory and statistics can be used to address problems such as model complexity. Furthermore, this framework provides solid ground for extending the GTM to wider contexts than that of this thesis.
Resumo:
Using techniques from Statistical Physics, the annealed VC entropy for hyperplanes in high dimensional spaces is calculated as a function of the margin for a spherical Gaussian distribution of inputs.
Resumo:
We introduce models of heterogeneous systems with finite connectivity defined on random graphs to capture finite-coordination effects on the low-temperature behaviour of finite-dimensional systems. Our models use a description in terms of small deviations of particle coordinates from a set of reference positions, particularly appropriate for the description of low-temperature phenomena. A Born-von Karman-type expansion with random coefficients is used to model effects of frozen heterogeneities. The key quantity appearing in the theoretical description is a full distribution of effective single-site potentials which needs to be determined self-consistently. If microscopic interactions are harmonic, the effective single-site potentials turn out to be harmonic as well, and the distribution of these single-site potentials is equivalent to a distribution of localization lengths used earlier in the description of chemical gels. For structural glasses characterized by frustration and anharmonicities in the microscopic interactions, the distribution of single-site potentials involves anharmonicities of all orders, and both single-well and double-well potentials are observed, the latter with a broad spectrum of barrier heights. The appearance of glassy phases at low temperatures is marked by the appearance of asymmetries in the distribution of single-site potentials, as previously observed for fully connected systems. Double-well potentials with a broad spectrum of barrier heights and asymmetries would give rise to the well-known universal glassy low-temperature anomalies when quantum effects are taken into account. © 2007 IOP Publishing Ltd.
Resumo:
Product reliability and its environmental performance have become critical elements within a product's specification and design. To obtain a high level of confidence in the reliability of the design it is customary to test the design under realistic conditions in a laboratory. The objective of the work is to examine the feasibility of designing mechanical test rigs which exhibit prescribed dynamical characteristics. The design is then attached to the rig and excitation is applied to the rig, which then transmits representative vibration levels into the product. The philosophical considerations made at the outset of the project are discussed as they form the basis for the resulting design methodologies. It is attempted to directly identify the parameters of a test rig from the spatial model derived during the system identification process. It is shown to be impossible to identify a feasible test rig design using this technique. A finite dimensional optimal design methodology is developed which identifies the parameters of a discrete spring/mass system which is dynamically similar to a point coordinate on a continuous structure. This design methodology is incorporated within another procedure which derives a structure comprising a continuous element and a discrete system. This methodology is used to obtain point coordinate similarity for two planes of motion, which is validated by experimental tests. A limitation of this approach is that it is impossible to achieve multi-coordinate similarity due to an interaction of the discrete system and the continuous element at points away from the coordinate of interest. During the work the importance of the continuous element is highlighted and a design methodology is developed for continuous structures. The design methodology is based upon distributed parameter optimal design techniques and allows an initial poor design estimate to be moved in a feasible direction towards an acceptable design solution. Cumulative damage theory is used to provide a quantitative method of assessing the quality of dynamic similarity. It is shown that the combination of modal analysis techniques and cumulative damage theory provides a feasible design synthesis methodology for representative test rigs.
Resumo:
This thesis is a study of low-dimensional visualisation methods for data visualisation under certainty of the input data. It focuses on the two main feed-forward neural network algorithms which are NeuroScale and Generative Topographic Mapping (GTM) by trying to make both algorithms able to accommodate the uncertainty. The two models are shown not to work well under high levels of noise within the data and need to be modified. The modification of both models, NeuroScale and GTM, are verified by using synthetic data to show their ability to accommodate the noise. The thesis is interested in the controversy surrounding the non-uniqueness of predictive gene lists (PGL) of predicting prognosis outcome of breast cancer patients as available in DNA microarray experiments. Many of these studies have ignored the uncertainty issue resulting in random correlations of sparse model selection in high dimensional spaces. The visualisation techniques are used to confirm that the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of ‘unclassifiable’ should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.
Resumo:
Background: The controversy surrounding the non-uniqueness of predictive gene lists (PGL) of small selected subsets of genes from very large potential candidates as available in DNA microarray experiments is now widely acknowledged 1. Many of these studies have focused on constructing discriminative semi-parametric models and as such are also subject to the issue of random correlations of sparse model selection in high dimensional spaces. In this work we outline a different approach based around an unsupervised patient-specific nonlinear topographic projection in predictive gene lists. Methods: We construct nonlinear topographic projection maps based on inter-patient gene-list relative dissimilarities. The Neuroscale, the Stochastic Neighbor Embedding(SNE) and the Locally Linear Embedding(LLE) techniques have been used to construct two-dimensional projective visualisation plots of 70 dimensional PGLs per patient, classifiers are also constructed to identify the prognosis indicator of each patient using the resulting projections from those visualisation techniques and investigate whether a-posteriori two prognosis groups are separable on the evidence of the gene lists. A literature-proposed predictive gene list for breast cancer is benchmarked against a separate gene list using the above methods. Generalisation ability is investigated by using the mapping capability of Neuroscale to visualise the follow-up study, but based on the projections derived from the original dataset. Results: The results indicate that small subsets of patient-specific PGLs have insufficient prognostic dissimilarity to permit a distinction between two prognosis patients. Uncertainty and diversity across multiple gene expressions prevents unambiguous or even confident patient grouping. Comparative projections across different PGLs provide similar results. Conclusion: The random correlation effect to an arbitrary outcome induced by small subset selection from very high dimensional interrelated gene expression profiles leads to an outcome with associated uncertainty. This continuum and uncertainty precludes any attempts at constructing discriminative classifiers. However a patient's gene expression profile could possibly be used in treatment planning, based on knowledge of other patients' responses. We conclude that many of the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of 'unclassifiable' should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.