987 resultados para Field Samples
Resumo:
AB STRACT This study aimed at evaluating the natural durability of Eucalyptus dunnii, Eucalyptus robusta, Eucalyptus tereticornis and Hovenia dulcis woods submitted to a deterioration test in two environments, field and forest. The test samples were buried until half of their length (150 mm). Evaluations were carried out each 45 days, totalizing a 405-day period, with three-repetition withdrawal of each species for environment, totalizing nine samples from each environment, making up 24 test samples for evaluation. After percentage calculations of mass loss and resistance degree classification, the deterioration index was adopted for decomposition evaluation and fungal decay potential determination of test samples. The study has been carried out in completely randomized design (CRD), evaluated through analysis of variance (ANOVA) with subsequent comparison of means by Turkey' s test, in a 5%-level of probability of error, along with regression analysis. Eucalyptus tereticornis wood presented lesser mass loss in both environments. Hovenia dulcis presented lesser deterioration probability in both environments. Forest environment test samples presented greater mass loss percentages and lesser deterioration index.
Resumo:
Bovine herpesvirus type 1 (BoHV-1) is recognized as a major cause of respiratory, reproductive disease and abortion in cattle. Vaccination is widely applied to minimize losses induced by BoHV-1 infections; however, vaccination of dams during pregnancy with modified live virus (MLV) vaccines has been occasionally associated to abortions. We have previously reported the development of a BoHV-1 recombinant virus, constructed with basis on a Brazilian BoHV-1 (Franco et al. 2002a) from which the gene coding for glycoprotein E (gE) was deleted (gE-) by genetic manipulation. Such recombinant has been previously evaluated in its potential as a differential vaccine (gE- vaccine) that allows differentiation between vaccinated and infected animals. Here, in the first part of the present study, the safety of the gE- vaccine during pregnancy was evaluated by the intramuscular inoculation of 10(7.4) tissue culture 50 % infective doses (TCID50) of the virus into 22 pregnant dams (14 BoHV-1 seronegative; 8 seropositive), at different stages of gestation. Other 15 pregnant dams were kept as non-vaccinated controls. No abortions, stillbirths or fetal abnormalities were seen after vaccination. Seroconversion was observed in both groups of previously seronegative vaccinated animals. In the second part of the study, the potential of the gE- vaccine virus to spread among beef cattle under field conditions was examined. Four heifers were inoculated intranasally with a larger amount (10(7,6) TCID50) of the gE- vaccine (to increase chances of transmission) and mixed with other sixteen animals at the same age and body condition, in the same grazing area, at a population density equal to the average cattle farming density within the region (one cattle head per 10,000 m²), for 180 days. All animals were monitored daily for clinical signs. Serum samples were collected on days 0, 30, 60 and 180 post-vaccination. Seroconversion was observed only in vaccinated heifers. These results indicate that, under the conditions of the present study, the gE- vaccine virus did not cause any noticeable harmful effect on pregnant dams and on its offspring and did not spread horizontally among cattle.
Resumo:
Adsorption of two herbicides, atrazine and picloram, displaying different sorption characteristics, were evaluated for O (organic) horizon samples collected from SMZs (streamside management zones) in Piedmont (Ultisol) of Georgia, USA. Samples were randomly collected from within 5 SMZs selected for a study of surface flow in field trials. The five SMZs represented five different slope classes, 2, 5, 10, 15 and 20%. Results indicate that 0 horizons have the potential for sorbing atrazine from surface water moving through forested SMZs. Atrazine adsorption was nearly linear over a 24-hour period. Equilibrium adsorption, determined through 24-hour laboratory tests, resulted in a Freundlich coefficient of 67.5 for atrazine. For picloram, negative adsorption was observed in laboratory experiments. This seemed to be due to interference with ELISA analyses; however, this was not confirmed. The adsorption coefficient (Kd) obtained for atrazine in 0 horizons was greater than it would have been expected for mineral soil (from 1 to 4). Picloram was not sorbed in 0 horizons at any significant degree. Although there is a significant potential for the direct adsorption of soluble forms of herbicides in SMZs, the actual value of this adsorption for protecting water is likely to be limited even for relatively strongly sorbed chemicals, such as atrazine, due to relatively slow uptake kinetics.
Resumo:
An area's innate potential to regenerate represents a crucial factor for its conservation and management. The seed rain and seed bank are important agents in the regeneration process. Seed banks are particularly important in communities where there is a high proportion of obligate seeders. Rocky outcrops are habitats where most part of the plant species depends on their seeds to reproduce and maintain viable populations. Therefore, seed banks ought to be important in this vegetation physiognomy. We test the hypotheses that the seed bank of the rocky outcrops found in the rupestrian fields of "Serra do Cipó", Brazil, is richer in species and denser than those formed on different vegetation physiognomies neighboring the outcrops. We then compared species abundance, species richness and composition in the rocky outcrops' seed banks with those of sandy and peaty bogs, forests, gallery forests, and "cerrados". Furthermore, we report on the natural regeneration potential of these soils by assessing a greenhouse study on seedling emergence. Soil samples were collected from 0 to 5 and 5 to 10 cm of depth. Rocky outcrops had the poorest in species and less dense seed bank and showed segregation in species composition. Emergence was greater in the most superficial layer. However, soils on rocky outcrops showed the greatest proportion of endemic threatened species in their seed banks, demonstrating their importance for biodiversity conservation of the "Serra do Cipó" rupestrian fields.
Resumo:
The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.
Resumo:
The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method under the visible light irradiation. The literature part introduces properties of different TiO2 crystal forms and principle of photocatalysis. It was expected that pulsed electric field would have an influence on degradation for oxalic acid and formic acid. TiO2 samples were prepared by using three frequencies (50Hz, 294Hz, and 963Hz) and two treatment times (12 minutes and 24 minutes) of pulsed electric field. The photocatalytic activities of TiO2 samples produced with sol-gel method were also compared with the TiO2 particles made by previous study and with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH) at the same condition. Results show that pulsed electric field does have an effect on degradation for oxalic acid and formic acid. Generally, higher photocatalytic activities for oxalic acid and formic acid were obtained with lower frequency and longer treatment time of pulsed electric field.
Resumo:
Sexual behavior in the field crickets, Gryllus veletis and G. pennsylvanicus , was studied in outdoor arenas (12 m2) at high and low levels of population density in 1983 and 1984. Crickets were weighed, individually marked, and observed from 2200 until 0800 hrs for at least 9 continuous nights. Calling was measured at 5 min intervals, and movement and matings were recorded hourly. Continuous 24 hr observations were also conducted,·and occurrences of aggressive and courtship songs were noted. The timing of males searching, calling, courting, and fighting for females should coincide with female movement and mating patterns. For most samples female movement and matings occurred at night in the 24 hr observations and were randomly distributed with time for both species in the 10 hr observations. Male movement for G. veletis high density only was enhanced at night in the 24 hr observations, however, males called more at night in both species at high and low densities. Male movement was randomly distributed with time in the 10 hr observations, and calling increased at dawn for the G. pennsylvanicus 1984 high density sample, but was randomly distributed in other samples. Most courtship and aggression songs in the 24 hr observations were too infrequent for statistical testing and generally did not coincide with matings. Assuming residual reproductive value, and costs attached to a male trait in terms of future reproductive success decline with age, males should behave in more costly ways with age; by calling and moving more with age. Consequently, mating rates should increase with age. Female behavior may not change with age. G. veletis , females moved more with age at both low density samples, however, crickets moved less with age at high density. G. pennsylvanicus females moved more with age in the 1984 low density sample, whereas crickets moved less with age in the 1983 high density sample. For both species males in the 1984 high density samples called less with age. For G. pennsylvanicus in 1983 calling and mating rates increased with age. Mating rates decreased with age for G. veletis males in the high density sample. Aging may not affect cricket behavior. As population density increases fewer calling sites become available, costs of territoriality increase, and matings resulting from non-calling behavior should increase. For both species the amount of calling and in G. veletis the distance travelled per night was not different between densities. G. pennsylvanicus males and females moved more at low density. At the same deneity levels there were no differences in calling, mating, and, movement rates in G. veletis , however, G. pennsylvanicus males moved more at high density in 1983 than 1984. There was a positive relationship between calling and mating for the G. pennsylvanicus low density sample only, and selection was acting directly to increase calling. For both species no relationships between movement and mating success was found, however, the selection gradient on movement in the G. veletis high density population was significant. The intensity of selection was not significant and was probably due to the inverse relationship between displacement and weight. Larger males should call more, mate more, and move less than smaller males. There were no correlations between calling and individual weight, and an inverse correlation between movement and size in the G. veletis high density population only. In G. pennsylvanicus , there was a positive correlation between individual weight and mating, but, some correlate of weight was under counter selection pressure and-prevented significance of the intensity of selection. In contrast, there was an inverse correlation in the G.·veletis low density B sample. Both measures of selection intensities were significant and showed that weight only was under selection pressures. An inverse correlation between calling and movement was found for G. veletis at low density only. Because males are territorial, females are predicted to move more than males, however, if movement is a mode of male-male reproductive competition then males may move more than females. G. pennsylvanicus males moved more than females in all samples, however, G. veletis males and females moved similar distances at all densities. The variation in relative mating success explained by calling scores, movement, and weight for both species and all samples were not significant In addition, for both species and all samples the intensity of selection never equalled the opportunity for selection.
Resumo:
On s’intéresse aux impacts des pesticides sur la microflore des plantes surtout dans le contexte des légumes contaminés par des agents pathogènes. Le but de cette étude est d'évaluer l'impact de certains pesticides sur la persistance de micro-organismes indicateurs et pathogènes. En laboratoire, la persistance d’E. coli et de Salmonella en présence de quatre pesticides (Ripcord 400EC, Copper 53W, Bioprotec CAF, Serenade MAX) a été étudiée. Les plaques de Pétrifilm et le milieu sélectif XLD sont utilisés pour énumérer les populations d’E. coli et de Salmonella. Il a été démontré que le Serenade MAX favorisait la croissance microbienne, le Bioprotec CAF et le Ripcord 400EC soutenaient la survie microbienne et le Copper 53W inhibait la croissance, à la fois d’E. coli et de Salmonella. En conditions terrain, Ripcord 400EC, Copper 53W, Bioprotec CAF ont été étudiés sur une culture de brocoli irriguée avec de l'eau expérimentalement contaminée par E. coli. Dans tous les traitements, un impact de l’irrigation a été observé sur les populations de levures et de moisissures (diminution) et les bactéries aérobies totales (augmentation). Une prévalence supérieure d’E. coli a été observée dans les parcelles traitées avec le Bioprotec CAF comparativement aux traitements au Copper 53W, ce qui est en accord avec les résultats observés lors de l'essai en laboratoire. Cependant, l'analyse statistique n'a montré aucune différence significative entre les traitements appliqués. Les effets directs des pesticides sur les micro-organismes sont confirmés dans des conditions de laboratoire mais demeurent méconnus dans les conditions expérimentales au champ.
Resumo:
Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.
Resumo:
The thesis mainly focuses on material characterization in different environments: freely available samples taken in planar fonn, biological samples available in small quantities and buried objects.Free space method, finds many applications in the fields of industry, medicine and communication. As it is a non-contact method, it can be employed for monitoring the electrical properties of materials moving through a conveyor belt in real time. Also, measurement on such systems at high temperature is possible. NID theory can be applied to the characterization of thin films. Dielectric properties of thin films deposited on any dielectric substrate can be determined. ln chemical industry, the stages of a chemical reaction can be monitored online. Online monitoring will be more efficient as it saves time and avoids risk of sample collection.Dielectric contrast is one of the main factors, which decides the detectability of a system. lt could be noted that the two dielectric objects of same dielectric constant 3.2 (s, of plastic mine) placed in a medium of dielectric constant 2.56 (er of sand) could even be detected employing the time domain analysis of the reflected signal. This type of detection finds strategic importance as it provides solution to the problem of clearance of non-metallic mines. The demining of these mines using the conventional techniques had been proved futile. The studies on the detection of voids and leakage in pipes find many applications.The determined electrical properties of tissues can be used for numerical modeling of cells, microwave imaging, SAR test etc. All these techniques need the accurate determination of dielectric constant. ln the modem world, the use of cellular and other wireless communication systems is booming up. At the same time people are concemed about the hazardous effects of microwaves on living cells. The effect is usually studied on human phantom models. The construction of the models requires the knowledge of the dielectric parameters of the various body tissues. lt is in this context that the present study gains significance. The case study on biological samples shows that the properties of normal and infected body tissues are different. Even though the change in the dielectric properties of infected samples from that of normal one may not be a clear evidence of an ailment, it is an indication of some disorder.ln medical field, the free space method may be adapted for imaging the biological samples. This method can also be used in wireless technology. Evaluation of electrical properties and attenuation of obstacles in the path of RF waves can be done using free waves. An intelligent system for controlling the power output or frequency depending on the feed back values of the attenuation may be developed.The simulation employed in GPR can be extended for the exploration of the effects due to the factors such as the different proportion of water content in the soil, the level and roughness of the soil etc on the reflected signal. This may find applications in geological explorations. ln the detection of mines, a state-of-the art technique for scanning and imaging an active mine field can be developed using GPR. The probing antenna can be attached to a robotic arm capable of three degrees of rotation and the whole detecting system can be housed in a military vehicle. In industry, a system based on the GPR principle can be developed for monitoring liquid or gas through a pipe, as pipe with and without the sample gives different reflection responses. lt may also be implemented for the online monitoring of different stages of extraction and purification of crude petroleum in a plant.Since biological samples show fluctuation in the dielectric nature with time and other physiological conditions, more investigation in this direction should be done. The infected cells at various stages of advancement and the normal cells should be analysed. The results from these comparative studies can be utilized for the detection of the onset of such diseases. Studying the properties of infected tissues at different stages, the threshold of detectability of infected cells can be determined.
Resumo:
The present thesis deals with the studies on certain aspects of pathological higher field theories .It brings to light some new abnormalities and new samples of abnormal theories and also puts forward a novel approach towards the construction of trouble free theories
Resumo:
The transport and magnetotransport properties of the metallic and ferromagnetic SrRuO3 (SRO) and the metallic and paramagnetic LaNiO3 (LNO) epitaxial thin films have been investigated in fields up to 55 T at temperatures down to 1.8 K . At low temperatures both samples display a well-defined resistivity minimum. We argue that this behavior is due to the increasing relevance of quantum corrections to the conductivity (QCC) as temperature is lowered; this effect being particularly relevant in these oxides due to their short mean free path. However, it is not straightforward to discriminate between contributions of weak localization and renormalization of electron-electron interactions to the QCC through temperature dependence alone. We have taken advantage of the distinct effect of a magnetic field on both mechanisms to demonstrate that in ferromagnetic SRO the weak-localization contribution is suppressed by the large internal field leaving only renormalized electron-electron interactions, whereas in the nonmagnetic LNO thin films the weak-localization term is relevant.
Resumo:
The magnetic-field dependence of the magnetization of cylinders, disks, and spheres of pure type-I superconducting lead was investigated by means of isothermal measurements of first magnetization curves and hysteresis cycles. Depending on the geometry of the sample and the direction and intensity of the applied magnetic field, the intermediate state exhibits different irreversible features that become particularly highlighted in minor hysteresis cycles. The irreversibility is noticeably observed in cylinders and disks only when the magnetic field is parallel to the axis of revolution and is very subtle in spheres. When the magnetic field decreases from the normal state, the irreversibility appears at a temperature-dependent value whose distance to the thermodynamic critical field depends on the sample geometry. The irreversible features in the disks are altered when they are submitted to an annealing process. These results agree well with very recent high-resolution magneto-optical experiments in similar materials that were interpreted in terms of transitions between different topological structures for the flux configuration in the intermediate state. A discussion of the relative role of geometrical barriers for flux entry and exit and pinning effects as responsible for the magnetic irreversibility is given.
Resumo:
A comparison between the charge transport properties in low molecular amorphous thin films of spiro-linked compound and their corresponding parent compound has been demonstrated. The field-effect transistor method is used for extracting physical parameters such as field-effect mobility of charge carriers, ON/OFF ratios, and stability. In addition, phototransistors have been fabricated and demonstrated for the first time by using organic materials. In this case, asymmetrically spiro-linked compounds are used as active materials. The active materials used in this study can be divided into three classes, namely Spiro-linked compounds (symmetrically spiro-linked compounds), the corresponding parent-compounds, and photosensitive spiro-linked compounds (asymmetrically spiro-linked com-pounds). Some of symmetrically spiro-linked compounds used in this study were 2,2',7,7'-Tetrakis-(di-phenylamino)-9,9'-spirobifluorene (Spiro-TAD),2,2',7,7'-Tetrakis-(N,N'-di-p-methylphenylamino)-9,9'-spirobifluorene (Spiro-TTB), 2,2',7,7'-Tetra-(m-tolyl-phenylamino)-9,9'-spirobifluorene (Spiro-TPD), and 2,2Ž,7,7Ž-Tetra-(N-phenyl-1-naphtylamine)-9,9Ž-spirobifluorene (Spiro alpha-NPB). Related parent compounds of the symmetrically spiro-linked compound used in this study were N,N,N',N'-Tetraphenylbenzidine (TAD), N,N,N',N'-Tetrakis(4-methylphenyl)benzidine (TTB), N,N'-Bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), and N,N'-Diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (alpha-NPB). The photosensitive asymmetrically spiro-linked compounds used in this study were 2,7-bis-(N,N'-diphenylamino)-2',7'-bis(biphenyl-4-yl)-9,9'-spirobifluorene (Spiro-DPSP), and 2,7-bis-(N,N'-diphenylamino)-2',7'-bis(spirobifluorene-2-yl)-9,9'-spirobifluorene (Spiro-DPSP^2). It was found that the field-effect mobilities of charge carriers in thin films of symmetrically spiro-linked compounds and their corresponding parent compounds are in the same order of magnitude (~10^-5 cm^2/Vs). However, the thin films of the parent compounds were easily crystallized after the samples have been exposed in ambient atmosphere and at room temperature for three days. In contrast, the thin films and the transistor characteristics of symmetrically spiro-linked compound did not change significantly after the samples have been stored in ambient atmosphere and at room temperature for several months. Furthermore, temperature dependence of the mobility was analyzed in two models, namely the Arrhenius model and the Gaussian Disorder model. The Arrhenius model tends to give a high value of the prefactor mobility. However, it is difficult to distinguish whether the temperature behaviors of the material under consideration follows the Arrhenius model or the Gaussian Disorder model due to the narrow accessible range of the temperatures. For the first time, phototransistors have been fabricated and demonstrated by using organic materials. In this case, asymmetrically spiro-linked compounds are used as active materials. Intramolecular charge transfer between a bis(diphenylamino)biphenyl unit and a sexiphenyl unit leads to an increase in charge carrier density, providing the amplification effect. The operational responsivity of better than 1 A/W can be obtained for ultraviolet light at 370 nm, making the device interesting for sensor applications. This result offers a new potential application of organic thin film phototransistors as low-light level and low-cost visible blind ultraviolet photodetectors.
Resumo:
A real-time analysis of renewable energy sources, such as arable crops, is of great importance with regard to an optimised process management, since aspects of ecology and biodiversity are considered in crop production in order to provide a sustainable energy supply by biomass. This study was undertaken to explore the potential of spectroscopic measurement procedures for the prediction of potassium (K), chloride (Cl), and phosphate (P), of dry matter (DM) yield, metabolisable energy (ME), ash and crude fibre contents (ash, CF), crude lipid (EE), nitrate free extracts (NfE) as well as of crude protein (CP) and nitrogen (N), respectively in pretreated samples and undisturbed crops. Three experiments were conducted, one in a laboratory using near infrared reflectance spectroscopy (NIRS) and two field spectroscopic experiments. Laboratory NIRS measurements were conducted to evaluate to what extent a prediction of quality parameters is possible examining press cakes characterised by a wide heterogeneity of their parent material. 210 samples were analysed subsequent to a mechanical dehydration using a screw press. Press cakes serve as solid fuel for thermal conversion. Field spectroscopic measurements were carried out with regard to further technical development using different field grown crops. A one year lasting experiment over a binary mixture of grass and red clover examined the impact of different degrees of sky cover on prediction accuracies of distinct plant parameters. Furthermore, an artificial light source was used in order to evaluate to what extent such a light source is able to minimise cloud effects on prediction accuracies. A three years lasting experiment with maize was conducted in order to evaluate the potential of off-nadir measurements inside a canopy to predict different quality parameters in total biomass and DM yield using one sensor for a potential on-the-go application. This approach implements a measurement of the plants in 50 cm segments, since a sensor adjusted sideways is not able to record the entire plant height. Calibration results obtained by nadir top-of-canopy reflectance measurements were compared to calibration results obtained by off-nadir measurements. Results of all experiments approve the applicability of spectroscopic measurements for the prediction of distinct biophysical and biochemical parameters in the laboratory and under field conditions, respectively. The estimation of parameters could be conducted to a great extent with high accuracy. An enhanced basis of calibration for the laboratory study and the first field experiment (grass/clover-mixture) yields in improved robustness of calibration models and allows for an extended application of spectroscopic measurement techniques, even under varying conditions. Furthermore, off-nadir measurements inside a canopy yield in higher prediction accuracies, particularly for crops characterised by distinct height increment as observed for maize.