573 resultados para Fiberglass pipes
Resumo:
Stone groundwood (SGW) is a fibrous matter commonly prepared in a high yield process, and mainly used for papermaking applications. In this work, the use of SGW fibers is explored as reinforcing element of polypropylene (PP) composites. Due to its chemical and superficial features, the use of coupling agents is needed for a good adhesion and stress transfer across the fiber-matrix interface. The intrinsic strength of the reinforcement is a key parameter to predict the mechanical properties of the composite and to perform an interface analysis. The main objective of the present work was the determination of the intrinsic tensile strength of stone groundwood fibers. Coupled and non-coupled PP composites from stone groundwood fibers were prepared. The influence of the surface morphology and the quality at interface on the final properties of the composite was analyzed and compared to that of fiberglass PP composites. The intrinsic tensile properties of stone groundwood fibers, as well as the fiber orientation factor and the interfacial shear strength of the current composites were determined
Resumo:
The production of dicalcium phosphate are included in the list of industries classified as NORM in Euratom 29/96. The aim of this study is to determine the con-centrations of specific flows and their variability over time of 226Ra, 210Pb and 210Po in the inputs and out-puts of the production process. Also classified areas of the plant and the workers according to the radio-logical risk and radiation protection measures have been proposed. The results show that the rock phos-phate has a high specific activity of the 226Rn, 210Po and 210Pb in secular equilibrium (1500-2000 Bq • kg-1) but the outputs of the process will distort the secu-lar equilibrium. The only shortfall is the flow balance of 226Ra, which accumulates in the process. The dis-tribution of the dose in the plant concentrates on the area of reactor tanks and slop pipes as regards exter-nal irradiation dose and the grinding zone, the area of packaging and loading area so respects dose inhaled. We propose a signaling areas, cleaning and replace-ment of old equipment in the facilities and radiological safety of the maintenance staff.
Resumo:
Apresentam‑se os principais resultados obtidos nas duas missões arqueológicas patrocinadas pelo Centro Português de Actividades Subaquáticas (CPAS) à ilha de São Vicente (República de Cabo Verde), em 1998 e em 2005. Em 1998, confirmou‑se o efectivo interesse arqueológico do sítio, localizado sobre o mar, em local abrigado da vasta baía de Salamansa, situada na parte setentrional da ilha, tendo‑se registado a respectiva extensão e estratigrafia e procedido à colheita de amostras para datação. Embora os resultados dessa campanha tivessem sido publicados, indicando estação de carácter habitacional, revelada pela notável acumulação de conchas, acompanhada de abundantes fragmentos de cerâmicas manuais, de produção africana, mantinha‑se indefinida a sua verdadeira natureza. Impunha‑se, assim, proceder à escavação integral da área que ainda subsistia da estação — sujeita de forma contínua a forte erosão marinha — bem como à colheita de novos materiais para datação, de forma a confirmar as conclusões preliminares anteriormente obtidas, objectivos que se concretizaram em 2005. Deste modo, foi possível concluir que, contrariando a hipótese, de início considerada, de poder corresponder a um testemunho da ocupação da ilha em época anterior à chegada dos Portugueses — hipótese que já as primeiras datas de radiocarbono contradiziam — se trata de um sítio onde uma unidade habitacional construída por muros de pedra seca, de planta ortogonal, revela inspiração europeia, aliás sublinhada pelos materiais exumados, onde estão representados produtos com tal origem, como cachimbos de caulino, vidros, faianças portuguesas, e projécteis de armas de fogo, a par de objectos oriundos do Extremo Oriente, num quadro dominado pelas produções cerâmicas africanas. Esta situação evidencia um estabelecimento cuja ocupação se centrou no século XVII, conforme indicam os materiais recolhidos e os resultados das datações obtidas, francamente aberto aos contactos de longa distância, apesar do isolamento do local escolhido. Os restos faunísticos recolhidos, com a presença deburro e de boi, sugerem um estacionamento sedentário, sendo a alimentação assegurada essencialmente pela captura de tartarugas, pela pesca e pela recolecção de moluscos marinhos (especialmente grandes lapas) e complementada pelo consumo de cabra, que poderia ser doméstica ou caçada, dado o estado selvagem a que retornou ali esta espécie. na última parte do trabalho, discutem‑se as diversas hipóteses susceptíveis de explicar esta estação — desde um entreposto comercial relacionado com a exploração agro‑pecuária da ilha de Santo Antão, passando por pequeno estabelecimento especializado de apoio à navegação, com a produção de carne salgada de tartaruga, até ter constituído refúgio relacionado com a intensa pirataria vigente à época no arquipélago, tendo presente os elementos históricos conhecidos, que, aliás, indicam que o início da ocupação permanente de São Vicente só se produziu a partir da segunda década do século XIX. Seja como for, a forte componente cultural africana revelada pelo espólio destes primeiros ocupantes da ilha expressa‑se também pelos rituais que terão envolvido o abandono do estabelecimento, com o enterramento de dois vasos emborcados sob o chão da habitação explorada, e a deposição de uma pequena taça, nas mesmas circunstâncias, junto à parede da mesma, do lado externo.
Resumo:
El Hospital Punta de Europa en Algeciras (Cádiz), centro sanitario del Servicio Andaluz de Salud, desea optimizar la gestión de sus instalaciones de generación de energía térmica (vapor, agua caliente sanitaria y agua caliente de calefacción) y adecuarlas a la normativa vigente así como la sustitución de bajantes del edificio, para lo cual sacará a concurso público la licitación para la concesión de dominio público de dichas instalaciones. Para definir el alcance y condiciones de la citada concesión, el Hospital Punta de Europa (Algeciras) del Servicio Andaluz de Salud ha solicitado a Pedro Alonso Martín el estudio para la reforma y adecuación de las instalaciones productoras de energía térmica del citado Hospital. El objetivo principal de este trabajo es hacer un estudio, propuesta y valoración de las actuaciones necesarias para la reforma y mejora de la explotación de las instalaciones generadoras de energía térmica y de la red saneamiento interior del Hospital Punta de Europa de Algeciras (Cádiz). Las actuales instalaciones de generación térmica consumidoras de energía del hospital dentro del alcance de este Proyecto son: Generación de vapor (lavandería y esterilización). Producción de agua caliente sanitaria (ACS). Producción de agua caliente de calefacción. La mayoría de los equipos productores de energía datan del año 1975, por lo que en la mayoría de los casos se ha cumplido su plazo de amortización y periodo de vida útil. Se hace necesaria la instalación de gas natural, debido a que se tendrá que abastecer a todas las calderas de la central térmica. El diseño del sistema de producción de agua caliente sanitaria garantiza el máximo confort y economía del usuario, compatible con el máximo ahorro energético y la protección del medio ambiente, cubriendo las necesidades de agua caliente sanitaria mediante la combinación de un sistema de calderas a gas con los colectores solares.
Resumo:
Most counties have bridges that are no longer adequate, and are faced with large capital expenditure for replacement structures of the same size. In this regard, low water stream crossings (LWSCs) can provide an acceptable, low cost alternative to bridges and culverts on low volume and reduced maintenance level roads. In addition to providing a low cost option for stream crossings, LWSCs have been designed to have the additional benefit of stream bed stabilization. Considerable information on the current status of LWSCs in Iowa, along with insight of needs for design assistance, was gained from a survey of county engineers that was conducted as part of this research (Appendix A). Copies of responses and analysis are included in Appendix B. This document provides guidelines for the design of LWSCs. There are three common types of LWSCs: unvented ford, vented ford with pipes, and low water bridges. Selection among these depends on stream geometry, discharge, importance of road, and budget availability. To minimize exposure to tort liability, local agencies using low water stream crossings should consider adopting reasonable selection and design criteria and certainly provide adequate warning of these structures to road users. The design recommendations included in this report for LWSCs provide guidelines and suggestions for local agency reference. Several design examples of design calculations are included in Appendix E.
Resumo:
Although there are many ways to cut you water heating bills, the all fall into two broad categories: reducing the amount of hot water you use and making your water heating system more efficient. Fortunately, there are several strategies that can help you consume less energy and save money - and still meet you hot water needs without sacrificing comfort or practicality. The booklet was designed to answer common questions about hot water systems and to provide you with the information necessary to make informed decision about a wide variety of topics, ranging from repairing hot water faucet leaks an insulation water supply pipes to installing low-flow shower heads and tuning you your existing water heather. You'll also find details on what to consider when it's time to go comparison shopping for a new water heater-including an evaluation of the alternatives to the common gas or electric storage tank unit that's found in the majority of homes in Iowa and across the country.
Resumo:
Most counties have bridges that are no longer adequate, and are faced with large capital expenditure for replacement structures of the same size. In this regard, low water stream crossings (LWSCs) can provide an acceptable, low cost alternative to bridges and culverts on low volume and reduced maintenance level roads. In addition to providing a low cost option for stream crossings, LWSCs have been designed to have the additional benefit of streambed stabilization. Considerable information on the current status of LWSCs in Iowa, along with insight of needs for design assistance, was gained from a survey of county engineers that was conducted as part of this research (Appendix A). Copies of responses and analysis are included in Appendix B. This document provides guidelines for the design of LWSCs. There are three common types of LWSCs: unvented ford, vented ford with pipes, and low water bridges. Selection among these depends on stream geometry, discharge, importance of road, and budget availability. To minimize exposure to tort liability, local agencies using low water stream crossings should consider adopting reasonable selection and design criteria and certainly provide adequate warning of these structures to road users. The design recommendations included in this report for LWSCs provide guidelines and suggestions for local agency reference. Several design examples of design calculations are included in Appendix E.
Resumo:
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. Therefore, well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). However, controversial findings are also reported in the literature regarding the benefits of subsurface drainage. The goal of this research was not to investigate whether subdrains are needed in Iowa pavements, but to conduct an extensive performance review of primary interstate pavement subdrains in Iowa, determine the cause of the problem if there are drains that are not functioning properly, and investigate the effect of poor subdrain performance due to improper design, construction, and maintenance on pavement surface distresses, if any. An extensive literature review was performed covering national-level and state-level research studies mainly focusing on the effects of subsurface drainage on performance of asphalt and concrete pavements. Several studies concerning the effects of a recycled portland cement concrete (RPCC) subbase on PCC pavement drainage systems were also reviewed. A detailed forensic test plan was developed in consultation with the project technical advisory committee (TAC) for inspecting and evaluating the Iowa pavement subdrains. Field investigations were conducted on 64 selected (jointed plain concrete pavement/JPCP and hot-mix asphalt/HMA) pavement sites during the fall season of 2012 and were mainly focused on the drainage outlet conditions. Statistical analysis was conducted on the compiled data from field investigations to further investigate the effect of drainage on pavement performance. Most Iowa subsurface drainage system outlet blockage is due to tufa, sediment, and soil. Although higher blockage rates reduce the flow rate of water inside outlet pipes, it does not always stop water flowing from inside the outlet pipe to outside the outlet pipe unless the outlet is completely blocked. Few pavement surface distresses were observed near blocked subsurface drainage outlet spots. More shoulder distresses (shoulder drop or cracking) were observed near blocked drainage outlet spots compared to open ones. Both field observations and limited performance analysis indicate that drainage outlet conditions do not have a significant effect on pavement performance. The use of RPCC subbase in PCC pavements results in tufa formation, a primary cause of drainage outlet blockage in JPCP. Several useful recommendations to potentially improve Iowa subdrain performance, which warrant detailed field investigations, were made
Resumo:
The bearing capacity and service life of a pavement is affected adversely by the presence of undrained water in the pavement layers. In cold winter climates like in Iowa, this problem is magnified further by the risk of frost damage when water is present. Therefore, well-performing subsurface drainage systems form an important aspect of pavement design by the Iowa Department of Transportation (DOT). However, controversial findings are also reported in the literature regarding the benefits of subsurface drainage. The goal of this research was not to investigate whether subdrains are needed in Iowa pavements, but to conduct an extensive performance review of primary interstate pavement subdrains in Iowa, determine the cause of the problem if there are drains that are not functioning properly, and investigate the effect of poor subdrain performance due to improper design, construction, and maintenance on pavement surface distresses, if any. An extensive literature review was performed covering national-level and state-level research studies mainly focusing on the effects of subsurface drainage on performance of asphalt and concrete pavements. Several studies concerning the effects of a recycled portland cement concrete (RPCC) subbase on PCC pavement drainage systems were also reviewed. A detailed forensic test plan was developed in consultation with the project technical advisory committee (TAC) for inspecting and evaluating the Iowa pavement subdrains. Field investigations were conducted on 64 selected (jointed plain concrete pavement/JPCP and hot-mix asphalt/HMA) pavement sites during the fall season of 2012 and were mainly focused on the drainage outlet conditions. Statistical analysis was conducted on the compiled data from field investigations to further investigate the effect of drainage on pavement performance. Most Iowa subsurface drainage system outlet blockage is due to tufa, sediment, and soil. Although higher blockage rates reduce the flow rate of water inside outlet pipes, it does not always stop water flowing from inside the outlet pipe to outside the outlet pipe unless the outlet is completely blocked. Few pavement surface distresses were observed near blocked subsurface drainage outlet spots. More shoulder distresses (shoulder drop or cracking) were observed near blocked drainage outlet spots compared to open ones. Both field observations and limited performance analysis indicate that drainage outlet conditions do not have a significant effect on pavement performance. The use of RPCC subbase in PCC pavements results in tufa formation, a primary cause of drainage outlet blockage in JPCP. Several useful recommendations to potentially improve Iowa subdrain performance, which warrant detailed field investigations, were made.
Resumo:
Corroded, deteriorated, misaligned, and distorted drainage pipes can cause a serious threat to a roadway. Normal practice is to remove and replace the damaged drainage structure. An alternative method of rehabilitating these structures is to slip line them with a polyethylene liner. Twelve drainage structures were slip lined with polyethylene liners during 1994 in Iowa. Two types of liners installed were "Culvert Renew" and "Snap-Tite." It was found that the liners could be easily installed by most highway, county, and city maintenance departments. The liners restore the flow and increase the service life of the original drainage structure. The liners were found to be cost competitive compared with the removal and replacement of the existing drainage structure. Slip lining has the largest economic benefit when the roadway is paved, the culvert is under a deep fill, or traffic volumes are high. The annular space between the original pipe and the liner was filled with flowable mortar. Care should be taken to properly brace and grout the annular space between the liner and the culvert to avoid deformation of the liner.
Resumo:
Corroded, deteriorated, misaligned, and distorted drainage pipes can cause a serious threat to a roadway. Normal practice is to remove and replace the damaged drainage structure. An alternative method of rehabilitating these structures is to slip line them with a polyethylene liner. Twelve drainage structures were slip lined with polyethylene liners during 1994 in Iowa. Two types of liners installed were "Culvert Renew" and "Snap-Tite". It was found that the liners could be easily installed by most highway, county, and city maintenance departments. The liners restore the flow and increase the service life of the original drainage structure. The liners were found to be cost competitive with the removal and replacement of the existing drainage structure. Slip lining has the largest economic benefit when the roadway is paved, the culvert is under a deep fill, or traffic volumes are high. The annular space between the original pipe and the liner was filled with flowable mortar. Care should be taken to properly brace and grout the annular space between the liner and the culvert.
Resumo:
Reflective cracking of asphalt resurfacing has been a concern for a long time. Years ago wire mesh was used to control widening cracks. More recently it has been fabrics or fiberglass. In 1986, part of the proposed fabric was deleted from projects in different parts of Iowa with various histories and designs. These projects were monitored in 1988, 1989, 1990 and 1992 with only the thin (3 inch) overlays on newly widened pavements showing a significantly greater percentage of cracks in the areas where the fabric was deleted.
Resumo:
Measuring the height of the vertical jump is an indicator of the strength and power of the lower body. The technological tools available to measure the vertical jump are black boxes and are not open to third-party verification or adaptation. We propose the creation of a measurement system called Chronojump-Boscosystem, consisting of open hardware and free software. Methods: A microcontroller was created and validated using a square wave generator and an oscilloscope. Two types of contact platforms were developed using different materials. These platforms were validated by the minimum pressure required for activation at different points by a strain gauge, together with the on/off time of our platforms in respect of the Ergojump-Boscosystem platform by a sample of 8 subjects performing submaximal jumps with one foot on each platform. Agile methodologies were used to develop and validate the software. Results: All the tools fall under the free software / open hardware guidelines and are, in that sense, free. The microcontroller margin of error is 0.1%. The validity of the fiberglass platform is 0.95 (ICC). The management software contains nearly 113.000 lines of code and is available in 7 languages.
Resumo:
This study was precipitated by several failures of flexible pipe culverts due to apparent inlet floatation. A survey of Iowa County Engineers revealed 31 culvert failures on pipes greater than 72" diameter in eight Iowa counties within the past five years. No special hydrologic, topography, and geotechnical environments appeared to be more susceptible to failure. However, most failures seemed to be on pipes flowing in inlet control. Geographically, most of the failures were in the southern and western sections of Iowa. The forces acting on a culvert pipe are quantified. A worst case scenario, where the pipe is completely plugged, is evaluated to determine the magnitude of forces that must be resisted by a tie down or headwall. Concrete headwalls or slope collars are recommended for most pipes over 4 feet in diameter.
Resumo:
Questionnaires were sent to transportation agencies in all 50 states in the U.S., to Puerto Rico, and all provinces in Canada asking about their experiences with uplift problems of - corrugated metal pipe (CMP). Responses were received from 52 agencies who reported 9 failures within the last 5 years. Some agencies also provided design standards for tiedowns to resist uplift. There was a wide variety in restraining forces used; for example for a pipe 6 feet in diameter, the resisting force ranged from 10 kips to 66 kips. These responses verified the earlier conclusion based on responses from Iowa county engineers that a potential uplift danger exists.when end restraint is not provided for CMP and that existing designs have an unclear theoretical or experimental basis. In an effort to develop more rational design standards, the longitudinal stiffness of three CMP ranging from 4 to 8 feet in diameter were measured in the laboratory. Because only three tests were conducted, a theoretical model to evaluate the stiffness of pipes of a variety of gages and corrugation geometries was also developed. The experimental results indicated a "stiffness" EI in the range of 9.11 x 10^5 k-in^2 to 34.43 x 10^5 k-in^2 for the three pipes with the larger diameter pipes having greater stiffness. The theoretical model developed conservatively estimates these stiffnesses.