689 resultados para Fiber laser
Resumo:
Optical solitons are important in the modern photonics. Passively mode locked erbium doped fiber lasers provide a neat platform to study soliton dynamics. Soliton interaction dynamics is important for various applications and has quite different manifestations, including e.g. such as bound state solitons [1], soliton rains [2]. Soliton interactions have been observed with different mode locking approaches such as figure-of-eight [3] and nonlinear polarization rotation [4]. Carbon nanotubes (CNT) have recently been widely applied as an efficient saturable absorber for passively mode locked fiber lasers. We have recently studied the polarization dynamics in a CNT mode locked vector soliton erbium doped fiber laser [5]. So far, the polarization dynamics of bound state solitons have yet to be investigated. In this report, we present a wide range of polarization dynamics of bound state solitons generated in a CNT mode locked erbium doped fiber laser. The fiber laser consists of ∼ 2 m highly doped erbium fiber (Liekki Er80-8/125) as the gain medium, an optical isolator to ensure unidirectional oscillation anda 980 nm laser diode is used to pump the gain through the 1550/980 nm wavelength division multiplexer. A fused 10:90 coupler is used to couple 10 % of the light out of the laser cavity and two in-line polarization controllers (NewPort) are used to control the birefringence of the cavity and polarization of the pump light respectively. The total cavity length is ∼ 7.8 m indicating a 25.7 MHz fundamental repetition rate. © 2013 IEEE.
Resumo:
Random distributed feedback (DFB) fiber lasers have attracted a great attention since first demonstration [1]. Despite big advance in practical laser systems, random DFB fiber laser spectral properties are far away to be understood or even numerically modelled. Up to date, only generation power could be calculated and optimized numerically [1,2] or analytically [3] within the power balance model. However, spectral and statistical properties of random DFB fiber laser can not be found in this way. Here we present first numerical modelling of the random DFB fiber laser, including its spectral and statistical properties, using NLSE-based model. © 2013 IEEE.
Resumo:
Tunable Raman fiber lasers have attracted great interest owing to their high efficiency and reliability important for applications, such as optical fiber communications and sensing, spectroscopy, and instrument testing. Their tuning range is defined by the Raman gain bandwidth amounting to about 40 nm in telecom spectral range (∼1550 nm) for conventional silica single mode fibers (SMF). To increase the range, highly nonlinear fibers which broaden pump spectrum may be incorporated in the cavity of Raman fiber lasers, see e.g. [1]. Another approach is to involve Rayleigh scattering forming random distributed feedback in a relatively long fiber resulting in prominent flattening of the tuning curve [2]. In this paper we report on combination of these two techniques in tunable Raman fiber lasers thus providing great improvement of their output characteristics. © 2013 IEEE.
Resumo:
Lasers with random distributed feedback (DFB) owing to Rayleigh scattering in optical fibers [1] have attracted a great interest: a number of papers demonstrating new laser schemes and applications have been proposed [2-7] recently. Moreover, the generation output power and, more generally, generation power distribution could be described both analytically and numerically within simple balance models [8-9]. However, spectral properties of random DFB fiber lasers are not studied except some attempt made in [10]. Generation spectrum of random DFB fiber laser is quite broad (more than 1 nm), and physical mechanisms of its formation and broadening are still unclear. There is no any practical solution up to date to minimize the generation spectrum width. Here we experimentally show the way to minimize the generation spectral width. © 2013 IEEE.
Resumo:
By tracing the beat frequency between two polarization modes generated from a DBR fiber laser, a novel human pulse monitoring device is demonstrated. The results show the device could be very useful for healthcare. © 2013 IEEE.
Resumo:
We report on ring thulium-doped fiber laser hybrid mode-locked by single-walled carbon nanotubes and nonlinear polarization evolution generating 600-fs pulses at 1910-1980nm wavelength band with 72.5MHz repetition rate. Average output power reached 300mW in single-pulse operation regime, corresponding to 4.88kW peak power and 2.93nJ pulse energy.
Resumo:
We propose and numerically demonstrate a novel simple method to produce optical Nyquist pulses based on pulse shaping in a passively mode-locked fiber laser with an in-cavity flat-top spectral filter. The proposed scheme takes advantage of the nonlinear in-cavity dynamics of the laser and offers the possibility to generate high-quality sinc-shaped pulses with widely tunable bandwidth directly from the laser oscillator. We also show that the use of a filter with a corrective convex profile relaxes the need for large nonlinear phase accumulation in the cavity by offsetting the concavity of the nonlinearly broadened pulse spectrum.
Resumo:
We propose a novel random DFB fiber laser based Raman amplification using bidirectional second-order pumping. This extends the reach of 116 Gb/s DP-QPSK WDM transmission up to 7915 km, compared with other Raman amplification techniques.
Resumo:
The formation and evolution of bound dissipative pulses in the all-normal dispersion Yb-fiber laser based on a novel 45° tilted fiber grating (TFG) are first investigated both numerically and experimentally. Based on the nonlinear polarization rotation technique, the TFG and two polarization controllers (PCs) are exploited for stable self-started passive mode locking. Numerical results show that the formation of bound-state pulses in the all-normal dispersion region is the progress of soliton shaping through the dispersive waves and follows the soliton energy quantization effect. Theoretical and experimental results demonstrate that the formation mechanism of bound-state pulses can be attributed to the high pump strength and effective filter bandwidth. The obtained bound-state dissipative pulses with quasi-rectangular spectral profile have fixed pulse separation as a function of pump power. © 2013 Astro Ltd.
Resumo:
We show that self-similar evolution in a fiber laser can stabilize spectra broader than the gain bandwidth. 21-fs pulses, which are the shortest from a fiber laser to date, and 200-nm spectra are generated. © OSA 2012.
Resumo:
An erbium doped fiber ring laser achieving soliton mode locking by the use of an intra-cavity all-fiber polarization interference filter (AFPIF) has been demonstrated. To incorporate an AFPIF with relative narrow transmission bandwidth, the laser has produced clean soliton pulses of 1.2 ps duration at a repetition rate of 14.98 MHz with a polarization extinction ratio up to 25.7 dB. Moreover, we have demonstrated that the operating wavelength of the mode locking laser can be tuned over 20 nm range from 1545 to 1565 nm by thermally tuning the AFPIF cavity. © 2012 Optical Society of America.
Spectral width and pulse duration tuning in Yb+ modelocked fiber laser with birefringent Lyot filter
Resumo:
A method of pulse duration and spectral width control in all-fiber Ytterbium modelocked laser with SWCNT is presented. It is shown that PM-fiber can also serve as a spectrally selective filter. © 2012 OSA.
Resumo:
Narrow-band generation is achieved in random distributed feedback (RDFB) fiber laser by using narrow-band filters in the center of a distributed cavity. The resulting line-width of ∼0.1 nm is 10 times less than line-width in classical random distributed feedback fiber laser. Spectral properties can be optimized further. © 2012 OSA.
Resumo:
We have measured the longitudinal power distribution inside a random distributed feedback fiber laser. Both analytic solution and results of direct numerical modeling are in excellent agreement with experimental observations. © 2012 OSA.
Resumo:
We use advanced statistical tools of time-series analysis to characterize the dynamical complexity of the transition to optical wave turbulence in a fiber laser. Ordinal analysis and the horizontal visibility graph applied to the experimentally measured laser output intensity reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods unveil coherent structures with well-defined time scales and strong correlations both, in the timing of the laser pulses and in their peak intensities. Our approach is generic and may be used in other complex systems that undergo similar transitions involving the generation of extreme fluctuations.