911 resultados para Fertilization -- physiology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In large parts of the Southern Ocean, primary production is limited due to shortage of iron (Fe). We measured vertical Fe profiles in the western Weddell Sea, Weddell-Scotia Confluence, and Antarctic Circumpolar Current (ACC), showing that Fe is derived from benthic Fe diffusion and sediment resuspension in areas characterized by high turbulence due to rugged bottom topography. Our data together with literature data reveal an exponential decrease of dissolved Fe (DFe) concentrations with increasing distance from the continental shelves of the Antarctic Peninsula and the western Weddell Sea. This decrease can be observed 3500 km eastward of the Antarctic Peninsula area, downstream the ACC. We estimated DFe summer fluxes into the upper mixed layer of the Atlantic sector of the Southern Ocean and found that horizontal advection dominates DFe supply, representing 54 ± 15% of the total flux, with significant vertical advection second most important at 29 ± 13%. Horizontal and vertical diffusion are weak with 1 ± 2% and 1 ± 1%, respectively. The atmospheric contribution is insignificant close to the Antarctic continent but increases to 15 ± 10% in the remotest waters (>1500 km offshore) of the ACC. Translating Southern Ocean carbon fixation by primary producers into biogenic Fe fixation shows a twofold excess of new DFe input close to the Antarctic continent and a one-third shortage in the open ocean. Fe recycling, with an estimated “fe” ratio of 0.59, is the likely pathway to balance new DFe supply and Fe fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many studies have debated the theoretical links between physiology, ecological niches and species distribution, few studies have provided evidence for a tight empirical coupling between these concepts at a macroecological scale. We used an ecophysiological model to assess the fundamental niche of a key-structural marine species. We found a close relationship between its fundamental and realized niche. The relationship remains constant at both biogeographical and decadal scales, showing that changes in environmental forcing propagate from the physiological to the macroecological level. A substantial shift in the spatial distribution is detected in the North Atlantic and projections of range shift using IPCC scenarios suggest a poleward movement of the species of one degree of latitude per decade for the 21st century. The shift in the spatial distribution of this species reveals a pronounced alteration of polar pelagic ecosystems with likely implications for lower and upper trophic levels and some biogeochemical cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an extensive dataset of dimethylsulphide (DMS, n = 651) and dimethylsulphoniopropionate (DMSP, n = 590) from the Atlantic Meridional Transect programme. These data are used to derive representative depth profiles that illustrate observed natural variations and can be used for DMS and DMSP model-validation in oligotrophic waters. To further understand our dataset, we interpret the data with a wide range of accompanying parameters that characterise the prevailing biogeochemical conditions and phytoplankton community physiology, activity, taxonomic composition, and capacity to cope with light stress. No correlations were observed with typical biomarker pigments for DMSP-producing species. However, strong correlations were found between DMSP and primary production by cells >2 µm in diameter, and between DMSP and some photo-protective pigments. These parameters are measures of mixed phytoplankton communities, so we infer that such associations are likely to be stronger in DMSP-producing organisms. Further work is warranted to develop links between community parameters, DMS and DMSP at the global scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seeding of an expanse of surface waters in the equatorial Pacific Ocean with low concentrations of dissolved iron triggered a massive phytoplankton bloom which consumed large quantities of carbon dioxide and nitrate that these microscopic plants cannot fully utilize under natural conditions. These and other observations provide unequivocal support for the hypothesis that phytoplankton growth in this oceanic region is limited by iron bioavailability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A widespread and complex distribution of vitamin requirements exists over the entire tree of life, with many species having evolved vitamin dependence, both within and between different lineages. Vitamin availability has been proposed to drive selection for vitamin dependence, in a process that links an organism's metabolism to the environment, but this has never been demonstrated directly. Moreover, understanding the physiological processes and evolutionary dynamics that influence metabolic demand for these important micronutrients has significant implications in terms of nutrient acquisition and, in microbial organisms, can affect community composition and metabolic exchange between coexisting species. Here we investigate the origins of vitamin dependence, using an experimental evolution approach with the vitamin B(12)-independent model green alga Chlamydomonas reinhardtii. In fewer than 500 generations of growth in the presence of vitamin B(12), we observe the evolution of a B(12)-dependent clone that rapidly displaces its ancestor. Genetic characterization of this line reveals a type-II Gulliver-related transposable element integrated into the B(12)-independent methionine synthase gene (METE), knocking out gene function and fundamentally altering the physiology of the alga.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipids are key constituents of marine phytoplankton, and some fatty acids (key constituents of lipids) are essential dietary components for secondary producers. However, in natural marine ecosystems the interactions of factors affecting seasonal phytoplankton lipid composition are still poorly understood. The aim of this study was to assess the roles of seasonal succession in phytoplankton community composition and nutrient concentrations, on the lipid composition of the phytoplankton community. Fatty acid and polar lipid composition in seston was measured in surface waters at the time series station L4, an inshore station in the Western English Channel, from January to December 2013. Redundancy analyses (RDA) were used to identify factors (abiotic and biotic) that explained the seasonal variability in phytoplankton lipids. RDA demonstrated that nutrients (namely nitrogen) explained the majority of variation in phytoplankton lipid composition, as well as a smaller explanatory contribution from changes in phytoplankton community composition. The physiological adaptations of the phytoplankton community to nutrient deplete conditions during the summer season when the water column was stratified, was further supported by changes in the polar lipid to phytoplankton biomass ratios (also modelled with RDA) and increases in the lipid to chlorophyll a ratios, which are both indicative of nutrient stress. However, the association of key fatty acid markers with phytoplankton groups e.g. 22:6 n-3 and dinoflagellate biomass (predominant in summer), meant there were no clear seasonal differences in the overall degree of fatty acid saturation, as might have been expected from typical nutrient stress on phytoplankton. Based on the use of polyunsaturated fatty acids (PUFA) as markers of ‘food quality’ for grazers, our results suggest that in this environment high food quality is maintained throughout summer, due to seasonal succession towards flagellated phytoplankton species able to maintain PUFA synthesis under surface layer nutrient depletion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PAWP, postacrosomal sheath WW domain binding protein, is a novel sperm protein identified as a candidate sperm borne, oocyte-activating factor (SOAF). PAWP induces both early and later egg activation events including meiotic resumption, pronuclear formation and egg cleavage. Based on the fact that calcium increase is universally accepted as the sole requirement for egg activation, we hypothesized that PAWP is an upstream regulator of the calcium signaling pathway during fertilization. Intracellular calcium increase was detected by two-photon laser scanning fluorescence microscopy following microinjection of recombinant PAWP into Xenopus oocytes, bolstering our hypothesis and suggesting the involvement of a novel PAWP-mediated signaling pathway during fertilization. The N-terminal of PAWP shares a high homology to WW domain binding protein while the C-terminal half contains a functional PPXY motif, which allows it to interact with group I WW domain proteins. These structural considerations together with published data indicating that PPXY synthetic peptide derived from PAWP inhibits ICSI-induced fertilization led to the hypothesis that PAWP triggers egg activation by binding to a group I WW domain protein in the oocyte. By far-Western analysis of oocyte cytoplasmic fraction, PAWP was found to bind to a 52 kDa protein. The competitive inhibition studies with PPXY synthetic peptide, WW domain constructs, and their point mutants demonstrated that the interaction between PAWP and its binding partner is specifically via the PPXY-WW domain module. The 52 kDa protein band crossreacted with antibodies against group I WW domain protein YAP in Western blot assay, indicating that this 52 kDa PAWP binding partner is either YAP or a YAP-related protein. In addition, the far-Western competitive inhibition studies with recombinant GST fusion protein YAP and another WW domain-containing protein, TAZ, demonstrated that the binding of PAWP to its binding partner was significantly reduced by TAZ, providing evidence that TAZ could be the 52 kDa protein candidate. Mass spectrometry was employed to identify this PAWP binding partner candidate. However, due to the low abundance of the candidate protein and the complexity of the sample, several strategies are still needed to enrich this protein. This study correlates PAWP induced meiotic resumption and calcium efflux at fertilization and uncovers a 52 kDa candidate WW domain protein in the oocyte cytoplasm that most likely interacts with PAWP to trigger egg activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During mammalian fertilization, the exposure of the inner acrosomal membrane (IAM) after acrosomal exocytosis is essential for the secondary binding between sperm and zona pellucida (ZP) of the oocyte, a prerequisite for sperm penetration through the ZP. The identification of the sperm protein(s) responsible for secondary binding has posed a challenge for researchers. We were able to isolate a sperm head fraction in which the IAM was exposed. Attached to the IAM was an electon dense layer, which we termed the IAM extracellular coat (IAMC). The IAMC was also observable in acrosome reacted sperm. High salt extraction removed the IAMC including a prominent 38 kDa polypeptide, referred to as IAM38. Antibodies raised against IAM38 confirmed its presence in the IAMC of intact, sonicated, and acrosome-reacted sperm. Sequencing of IAM38 revealed it as the ortholog of porcine SP38, a protein that was found to bind specifically to ZP2 but whose intra-acrosomal location was not known. We showed that IAM38 occupied the leading edge of sperm contact with the zona pellucida during fertilization, and that secondary binding and fertilization were inhibited in vitro by antibodies directed against IAM38. As for the mechanism of secondary sperm-zona binding by IAM38, we provided evidence that the synthetic peptide derived from the ZP2-binding motif of IAM38 had a competitive inhibitory effect on both sperm-zona binding and fertilization while its mutant form was ineffective. In summary, our study provides a novel approach to obtain direct information on the peripheral and integral protein composition of the IAM and consolidates IAM38 as a genuine secondary sperm-zona binding protein. In addition, our investigation also provides an ultrastructural description of the origin, expression and assembly of IAM38 during spermatogenesis. It shows that IAM38 is originally secreted by the Golgi apparatus as part of the dense contents of the proacrosomic granules but later, during acrosome capping phase of spermiogenesis, is redistributed to the inner periphery of the acrosomal membrane. This relocation occurs at the time of acrosomal compaction, an obligatory structural change that fails to occur in Zpbp1-/- knockout mice, which do not express IAM38 and are infertile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of ocular blood flow occurs predominantly at the level of the retinal and choroidal arterioles. The present article provides an overview of the Ca2 + handling mechanisms and plasmalemmal ion channels involved in the regulation of retinal and choroidal arteriolar smooth muscle tone. Increases in global intracellular free Ca2 + ([Ca2 +]i) involve multiple mechanisms, including agonist-dependent release of Ca2 + from intracellular stores through activation of the inositol trisphosphate (IP3) pathway. Ca2 + enters by voltage-dependent L-type Ca2 + channels and novel dihydropyridine-sensitive store-operated nonselective cation channels. Ca2 + extrusion is mediated by plasmalemmal Ca2 +-ATPases and through Na+/Ca2+ exchange. Local Ca2 + transients (Ca2 + sparks) play an important excitatory role, acting as the building blocks for more global Ca2 + signals that can initiate vasoconstriction. K+ and Cl- channels may also affect cell function by modulating membrane potential. The precise contribution of each of these mechanisms to the regulation of retinal and choroidal perfusion in vivo warrants future investigation.