974 resultados para Fermi-Coulomb correlations
Resumo:
We explore the phase diagram of a two-component ultracold atomic Fermi gas interacting with zero-range forces in the limit of weak coupling. We focus on the dependence of the pairing gap and the free energy on the variations in the number densities of the two species while the total density of the system is held fixed. As the density asymmetry is increased, the system exhibits a transition from a homogenous Bardeen-Cooper-Schrieffer (BCS) phase to phases with spontaneously broken global space symmetries. One such realization is the deformed Fermi surface superfluidity (DFS) which exploits the possibility of deforming the Fermi surfaces of the species into ellipsoidal form at zero total momentum of Cooper pairs. The critical asymmetries at which the transition from DFS to the unpaired state occurs are larger than those for the BCS phase. In this precritical region the DFS phase lowers the pairing energy of the asymmetric BCS state. We compare quantitatively the DFS phase to another realization of superconducting phases with broken translational symmetry: the single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell phase, which is characterized by a nonvanishing center-of-mass momentum of the Cooper pairs. The possibility of the detection of the DFS phase in the time-of-flight experiments is discussed and quantified for the case of 6Li atoms trapped in two different hyperfine states.
Resumo:
We consider the distribution of cross sections of clusters and the density-density correlation functions for the A+B¿0 reaction. We solve the reaction-diffusion equations numerically for random initial distributions of reactants. When both reactant species have the same diffusion coefficients the distribution of cross sections and the correlation functions scale with the diffusion length and obey superuniversal laws (independent of dimension). For different diffusion coefficients the correlation functions still scale, but the scaling functions depend on the dimension and on the diffusion coefficients. Furthermore, we display explicitly the peculiarities of the cluster-size distribution in one dimension.
Resumo:
We investigate within mean-field theory the influence of a one-dimensional optical lattice and of trapped degenerate fermions on the critical rotational frequency for vortex line creation in a Bose-Einstein condensate. We consider laser intensities of the lattice such that quantum coherence across the condensate is ensured. We find a sizable decrease of the thermodynamic critical frequency for vortex nucleation with increasing applied laser strength and suggest suitable parameters for experimental observation. Since 87Rb-40K mixtures may undergo collapse, we analyze the related question of how the optical lattice affects the mechanical stability of the system.
Resumo:
We analyze the influence of the density dependence of the symmetry energy on the average excitation energy of the isoscalar giant monopole resonance (GMR) in stable and exotic neutron-rich nuclei by applying the relativistic extended Thomas-Fermi method in scaling and constrained calculations. For the effective nuclear interaction, we employ the relativistic mean field model supplemented by an isoscalar-isovector meson coupling that allows one to modify the density dependence of the symmetry energy without compromising the success of the model for binding energies and charge radii. The semiclassical estimates of the average energy of the GMR are known to be in good agreement with the results obtained in full RPA calculations. The present analysis is performed along the Pb and Zr isotopic chains. In the scaling calculations, the excitation energy is larger when the symmetry energy is softer. The same happens in the constrained calculations for nuclei with small and moderate neutron excess. However, for nuclei of large isospin the constrained excitation energy becomes smaller in models having a soft symmetry energy. This effect is mainly due to the presence of loosely-bound outer neutrons in these isotopes. A sharp increase of the estimated width of the resonance is found in largely neutron-rich isotopes, even for heavy nuclei, which is enhanced when the symmetry energy of the model is soft. The results indicate that at large neutron numbers the structure of the low-energy region of the GMR strength distribution changes considerably with the density dependence of the nuclear symmetry energy, which may be worthy of further characterization in RPA calculations of the response function.
Resumo:
We derive analytical expressions for the excitation energy of the isoscalar giant monopole and quadrupole resonances in finite nuclei, by using the scaling method and the extended ThomasFermi approach to relativistic mean-field theory. We study the ability of several nonlinear σω parameter sets of common use in reproducing the experimental data. For monopole oscillations the calculations agree better with experiment when the nuclear matter incompressibility of the relativistic interaction lies in the range 220260 MeV. The breathing-mode energies of the scaling method compare satisfactorily with those obtained in relativistic RPA and time-dependent mean-field calculations. For quadrupole oscillations, all the analyzed nonlinear parameter sets reproduce the empirical trends reasonably well.
Resumo:
By using the scaling method we derive the virial theorem for the relativistic mean field model of nuclei treated in the ThomasFermi approach. The ThomasFermi solutions statisfy the stability condition against scaling. We apply the formalism to study the excitation energy of the breathing mode in finite nuclei with several relativistic parameter sets of common use.
Resumo:
The hypernetted-chain formalism for boson-boson mixtures described by an extended Jastrow correlated wave function is derived, taking into account elementary diagrams and triplet correlations. The energy of an ideal boson 3He-4He mixture is computed for low values of the 3He concentration. The zero-3He-concentration limit provides a 3He chemical potential in good agreement with the experimental value, when a McMillan two-body correlation factor and the Lennard-Jones potential are adopted. If the Euler equations for the two-body correlation factors are solved in presence of triplet correlations, the agreement is again improved. At the experimental 4He equilibrium density, the 3He chemical potential turns out to be -2.58 K, to be compared with the experimental value, -2.79 K.
Resumo:
The ground-state properties of the 3He-4He mixture are investigated by assuming the wave function to be a product of pair correlations. The antisymmetry of the 3He component is taken into account by Fermi-hypernetted-chain techniques and the results are compared with those obtained from the lowest-order Wu-Feenberg expansion and the boson-boson approximation. A little improvement is found in the 3He maximum solubility. A microscopic theory to calculate 3He static properties such as zero-concentration chemical potential and excess-volume parameter is derived and the results are compared with the experiments.
Resumo:
Epitaxial and fully strained SrRuO3 thin films have been grown on SrTiO3(100). At initial stages the growth mode is three-dimensional- (3D-)like, leading to a finger-shaped structure aligned with the substrate steps and that eventually evolves into a 2D step-flow growth. We study the impact that the defect structure associated with this unique growth mode transition has on the electronic properties of the films. Detailed analysis of the transport properties of nanometric films reveals that microstructural disorder promotes a shortening of the carrier mean free path. Remarkably enough, at low temperatures, this results in a reinforcement of quantum corrections to the conductivity as predicted by recent models of disordered, strongly correlated electronic systems. This finding may provide a simple explanation for the commonly observed¿in conducting oxides-resistivity minima at low temperature. Simultaneously, the ferromagnetic transition occurring at about 140 K, becomes broader as film thickness decreases down to nanometric range. The relevance of these results for the understanding of the electronic properties of disordered electronic systems and for the technological applications of SrRuO3¿and other ferromagnetic and metallic oxides¿is stressed.
Resumo:
During plastic deformation of crystalline materials, the collective dynamics of interacting dislocations gives rise to various patterning phenomena. A crucial and still open question is whether the long range dislocation-dislocation interactions which do not have an intrinsic range can lead to spatial patterns which may exhibit well-defined characteristic scales. It is demonstrated for a general model of two-dimensional dislocation systems that spontaneously emerging dislocation pair correlations introduce a length scale which is proportional to the mean dislocation spacing. General properties of the pair correlation functions are derived, and explicit calculations are performed for a simple special case, viz pair correlations in single-glide dislocation dynamics. It is shown that in this case the dislocation system exhibits a patterning instability leading to the formation of walls normal to the glide plane. The results are discussed in terms of their general implications for dislocation patterning.
Resumo:
An analysis of cosmic string breaking with the formation of black holes attached to the ends reveals a remarkable feature: the black holes can be correlated or uncorrelated. We find that, as a consequence, the number-of-states enhancement factor in the action governing the formation of uncorrelated black holes is twice the one for a correlated pair. We argue that when an uncorrelated pair forms at the ends of the string, the physics involved is more analogous to thermal nucleation than to particle-antiparticle creation. Also, we analyze the process of intercommuting strings induced by black hole annihilation and merging. Finally, we discuss the consequences for grand unified strings. The process whereby uncorrelated black holes are formed yields a rate which significantly improves over those previously considered, but still not enough to modify string cosmology. 1995 The American Physical Society.
Resumo:
A broad class of dark energy models, which have been proposed in attempts at solving the cosmological constant problems, predict a late time variation of the equation of state with redshift. The variation occurs as a scalar field picks up speed on its way to negative values of the potential. The negative potential energy eventually turns the expansion into contraction and the local universe undergoes a big crunch. In this paper we show that cross-correlations of the cosmic microwave background anisotropy and matter distribution, in combination with other cosmological data, can be used to forecast the imminence of such cosmic doomsday.
Resumo:
Random scale-free networks have the peculiar property of being prone to the spreading of infections. Here we provide for the susceptible-infected-susceptible model an exact result showing that a scale-free degree distribution with diverging second moment is a sufficient condition to have null epidemic threshold in unstructured networks with either assortative or disassortative mixing. Degree correlations result therefore irrelevant for the epidemic spreading picture in these scale-free networks. The present result is related to the divergence of the average nearest neighbors degree, enforced by the degree detailed balance condition.
Resumo:
We study the dynamics of density fluctuations in purely diffusive systems away from equilibrium. Under some conditions the static density correlation function becomes long ranged. We then analyze this behavior in the framework of nonequilibrium fluctuating hydrodynamics.
Resumo:
We develop a statistical theory to characterize correlations in weighted networks. We define the appropriate metrics quantifying correlations and show that strictly uncorrelated weighted networks do not exist due to the presence of structural constraints. We also introduce an algorithm for generating maximally random weighted networks with arbitrary P(k,s) to be used as null models. The application of our measures to real networks reveals the importance of weights in a correct understanding and modeling of these heterogeneous systems.