967 resultados para Feature Model
Resumo:
The sensitivity of the neodymium isotopic composition (ϵNd) to tectonic rearrangements of seaways is investigated using an Earth System Model of Intermediate Complexity. The shoaling and closure of the Central American Seaway (CAS) is simulated, as well as the opening and deepening of Drake Passage (DP). Multiple series of equilibrium simulations with various intermediate depths are performed for both seaways, providing insight into ϵNd and circulation responses to progressive throughflow evolutions. Furthermore, the sensitivity of these responses to the Atlantic Meridional Overturning Circulation (AMOC) and the neodymium boundary source is examined. Modeled ϵNd changes are compared to sediment core and ferromanganese (Fe-Mn) crust data. The model results indicate that the North Atlantic ϵNd response to the CAS shoaling is highly dependent on the AMOC state, i.e., on the AMOC strength before the shoaling to shallow depths (preclosure). Three scenarios based on different AMOC forcings are discussed, of which the model-data agreement favors a shallow preclosure (Miocene) AMOC (∼6 Sv). The DP opening causes a rather complex circulation response, resulting in an initial South Atlantic ϵNd decrease preceding a larger increase. This feature may be specific to our model setup, which induces a vigorous CAS throughflow that is strongly anticorrelated to the DP throughflow. In freshwater experiments following the DP deepening, ODP Site 1090 is mainly influenced by AMOC and DP throughflow changes, while ODP Site 689 is more strongly influenced by Southern Ocean Meridional Overturning Circulation and CAS throughflow changes. The boundary source uncertainty is largest for shallow seaways and at shallow sites.
New fully kinetic model for the study of electric potential, plasma, and dust above lunar landscapes
Resumo:
We have developed a new fully kinetic electrostatic simulation, HYBes, to study how the lunar landscape affects the electric potential and plasma distributions near the surface and the properties of lifted dust. The model embodies new techniques that can be used in various types of physical environments and situations. We demonstrate the applicability of the new model in a situation involving three charged particle species, which are solar wind electrons and protons, and lunar photoelectrons. Properties of dust are studied with test particle simulations by using the electric fields derived from the HYBes model. Simulations show the high importance of the plasma and the electric potential near the surface. For comparison, the electric potential gradients near the landscapes with feature sizes of the order of the Debye length are much larger than those near a flat surface at different solar zenith angles. Furthermore, dust test particle simulations indicate that the landscape relief influences the dust location over the surface. The study suggests that the local landscape has to be taken into account when the distributions of plasma and dust above lunar surface are studied. The HYBes model can be applied not only at the Moon but also on a wide range of airless planetary objects such as Mercury, other planetary moons, asteroids, and nonactive comets.
Resumo:
We analyzed more than 200 OSIRIS NAC images with a pixel scale of 0.9-2.4 m/pixel of comet 67P/Churyumov-Gerasimenko (67P) that have been acquired from onboard the Rosetta spacecraft in August and September 2014 using stereo-photogrammetric methods (SPG). We derived improved spacecraft position and pointing data for the OSIRIS images and a high-resolution shape model that consists of about 16 million facets (2 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. From this model, we derive a volume for the northern hemisphere of 9.35 km(3) +/- 0.1 km(3). With the assumption of a homogeneous density distribution and taking into account the current uncertainty of the position of the comet's center-of-mass, we extrapolated this value to an overall volume of 18.7 km(3) +/- 1.2 km(3), and, with a current best estimate of 1.0 X 10(13) kg for the mass, we derive a bulk density of 535 kg/m(3) +/- 35 kg/m(3). Furthermore, we used SPG methods to analyze the rotational elements of 67P. The rotational period for August and September 2014 was determined to be 12.4041 +/- 0.0004 h. For the orientation of the rotational axis (z-axis of the body-fixed reference frame) we derived a precession model with a half-cone angle of 0.14 degrees, a cone center position at 69.54 degrees/64.11 degrees (RA/Dec J2000 equatorial coordinates), and a precession period of 10.7 days. For the definition of zero longitude (x-axis orientation), we finally selected the boulder-like Cheops feature on the big lobe of 67P and fixed its spherical coordinates to 142.35 degrees right-hand-rule eastern longitude and -0.28 degrees latitude. This completes the definition of the new Cheops reference frame for 67P. Finally, we defined cartographic mapping standards for common use and combined analyses of scientific results that have been obtained not only within the OSIRIS team, but also within other groups of the Rosetta mission.
Resumo:
We propose a way to incorporate NTBs for the four workhorse models of the modern trade literature in computable general equilibrium models (CGEs). CGE models feature intermediate linkages and thus allow us to study global value chains (GVCs). We show that the Ethier-Krugman monopolistic competition model, the Melitz firm heterogeneity model and the Eaton and Kortum model can be defined as an Armington model with generalized marginal costs, generalized trade costs and a demand externality. As already known in the literature in both the Ethier-Krugman model and the Melitz model generalized marginal costs are a function of the amount of factor input bundles. In the Melitz model generalized marginal costs are also a function of the price of the factor input bundles. Lower factor prices raise the number of firms that can enter the market profitably (extensive margin), reducing generalized marginal costs of a representative firm. For the same reason the Melitz model features a demand externality: in a larger market more firms can enter. We implement the different models in a CGE setting with multiple sectors, intermediate linkages, non-homothetic preferences and detailed data on trade costs. We find the largest welfare effects from trade cost reductions in the Melitz model. We also employ the Melitz model to mimic changes in Non tariff Barriers (NTBs) with a fixed cost-character by analysing the effect of changes in fixed trade costs. While we work here with a model calibrated to the GTAP database, the methods developed can also be applied to CGE models based on the WIOD database.
Resumo:
This paper shows that countries characterized by a financial accelerator mechanism may reverse the usual finding of the literature -- flexible exchange rate regimes do a worse job of insulating open economies from external shocks. I obtain this result with a calibrated small open economy model that endogenizes foreign interest rates by linking them to the banking sector's foreign currency leverage. This relationship renders exchange rate policy more important compared to the usual exogeneity assumption. I find empirical support for this prediction using the Local Projections method. Finally, 2nd order approximation to the model finds larger welfare losses under flexible regimes.
Resumo:
Radiomics is the high-throughput extraction and analysis of quantitative image features. For non-small cell lung cancer (NSCLC) patients, radiomics can be applied to standard of care computed tomography (CT) images to improve tumor diagnosis, staging, and response assessment. The first objective of this work was to show that CT image features extracted from pre-treatment NSCLC tumors could be used to predict tumor shrinkage in response to therapy. This is important since tumor shrinkage is an important cancer treatment endpoint that is correlated with probability of disease progression and overall survival. Accurate prediction of tumor shrinkage could also lead to individually customized treatment plans. To accomplish this objective, 64 stage NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. Quantitative image features were extracted and principal component regression with simulated annealing subset selection was used to predict shrinkage. Cross validation and permutation tests were used to validate the results. The optimal model gave a strong correlation between the observed and predicted shrinkages with . The second objective of this work was to identify sets of NSCLC CT image features that are reproducible, non-redundant, and informative across multiple machines. Feature sets with these qualities are needed for NSCLC radiomics models to be robust to machine variation and spurious correlation. To accomplish this objective, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. For each machine, quantitative image features with concordance correlation coefficient values greater than 0.90 were considered reproducible. Multi-machine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering. The findings showed that image feature reproducibility and redundancy depended on both the CT machine and the CT image type (average cine 4D-CT imaging vs. end-exhale cine 4D-CT imaging vs. helical inspiratory breath-hold 3D CT). For each image type, a set of cross-machine reproducible, non-redundant, and informative image features was identified. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multi-machine reproducibility and are the best candidates for clinical correlation.
Resumo:
With full-waveform (FWF) lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria), operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.
Resumo:
The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.
Resumo:
Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.
Resumo:
In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the state variables. In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. The approach developed here can be considered as a generalized version of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved.
Resumo:
Objectives: A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names.We sought to automatically classify digitally reconstructed interneuronal morphologies according tothis scheme. Simultaneously, we sought to discover possible subtypes of these types that might emergeduring automatic classification (clustering). We also investigated which morphometric properties weremost relevant for this classification.Materials and methods: A set of 118 digitally reconstructed interneuronal morphologies classified into thecommon basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of theworld?s leading neuroscientists, quantified by five simple morphometric properties of the axon and fourof the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. Wethen removed this class information for each type separately, and applied semi-supervised clustering tothose cells (keeping the others? cluster membership fixed), to assess separation from other types and lookfor the formation of new groups (subtypes). We performed this same experiment unlabeling the cells oftwo types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixtureof Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performedthe described experiments on three different subsets of the data, formed according to how many expertsagreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least26 (47 neurons).Results: Interneurons with more reliable type labels were classified more accurately. We classified HTcells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy,respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, andno subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette widthand ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively,confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a singletype also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometricproperties were more relevant that dendritic ones, with the axonal polar histogram length in the [pi, 2pi) angle interval being particularly useful.Conclusions: The applied semi-supervised clustering method can accurately discriminate among CB, HT, LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal classification. The discovery of potential subtypes suggests that some of these types are more heteroge-neous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones fordistinguishing among the CB, HT, LB, and MA interneuron types.
Resumo:
This work proposes an automatic methodology for modeling complex systems. Our methodology is based on the combination of Grammatical Evolution and classical regression to obtain an optimal set of features that take part of a linear and convex model. This technique provides both Feature Engineering and Symbolic Regression in order to infer accurate models with no effort or designer's expertise requirements. As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. These facilities consume from 10 to 100 times more power per square foot than typical office buildings. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. For this case study, our methodology minimizes error in power prediction. This work has been tested using real Cloud applications resulting on an average error in power estimation of 3.98%. Our work improves the possibilities of deriving Cloud energy efficient policies in Cloud data centers being applicable to other computing environments with similar characteristics.
Resumo:
The existing seismic isolation systems are based on well-known and accepted physical principles, but they are still having some functional drawbacks. As an attempt of improvement, the Roll-N-Cage (RNC) isolator has been recently proposed. It is designed to achieve a balance in controlling isolator displacement demands and structural accelerations. It provides in a single unit all the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, resistance to low service loads and minor vibration, and hysteretic energy dissipation characteristics. It is characterized by two unique features that are a self-braking (buffer) and a self-recentering mechanism. This paper presents an advanced representation of the main and unique features of the RNC isolator using an available finite element code called SAP2000. The validity of the obtained SAP2000 model is then checked using experimental, numerical and analytical results. Then, the paper investigates the merits and demerits of activating the built-in buffer mechanism on both structural pounding mitigation and isolation efficiency. The paper addresses the problem of passive alleviation of possible inner pounding within the RNC isolator, which may arise due to the activation of its self-braking mechanism under sever excitations such as near-fault earthquakes. The results show that the obtained finite element code-based model can closely match and accurately predict the overall behavior of the RNC isolator with effectively small errors. Moreover, the inherent buffer mechanism of the RNC isolator could mitigate or even eliminate direct structure-tostructure pounding under severe excitation considering limited septation gaps between adjacent structures. In addition, the increase of inherent hysteretic damping of the RNC isolator can efficiently limit its peak displacement together with the severity of the possibly developed inner pounding and, therefore, alleviate or even eliminate the possibly arising negative effects of the buffer mechanism on the overall RNC-isolated structural responses.