971 resultados para Fas Ligand
Resumo:
A dendritic cell (DC) imbalance with a marked deficiency in CD4(-)8(+) DC occurs in non-obese diabetic (NOD) mice, a model of human autoimmune diabetes mellitus. Using a NOD congenic mouse strain, we find that this CD4(-)8(+) DC deficiency is associated with a gene segment on chromosome 4, which also encompasses non-MHC diabetes susceptibility loci. Treatment of NOD mice with fms-like tyrosine kinase 3 ligand (FL) enhances the level of CD4(-)8(+) DC, temporarily reversing the DC subtype imbalance. At the same time, fms-like tryosine kinase 3 ligand treatment blocks early stages of the diabetogenic process and with appropriately timed administration can completely prevent diabetes development. This points to a possible clinical use of FL to prevent autoimmune disease.
Resumo:
The current study aims to ascertain the fate of the melanocyte stimulating hormone (MSH) receptor and its ligand [Nle(4), D-Phe(7)]alpha-MsH (NDP-MSH) following binding to murine B16 melanoma cells. Cells were incubated with [I-125]-NDP-MSH for up to 180 min and binding, internalization and degradation determined. Intracellular trafficking of the radiolabel was assessed !using Percoll density gradient centrifugation of homogenized cells. Receptor down-regulation and receptor mRNA levels were also measured over 96 hr after exposure to 1 mu M ligand. NDP-MSH accumulation increased with time in a temperature-dependent manner and was inhibited by excess peptide. The ligand was rapidly internalized and translocated to the lysosomal compartment where it was degraded. Internalization was accompanied by a loss or down-regulation of cell surface receptors, suggesting internalization of the NDP-MSH-receptor complex. No recycling of the receptors between the plasma membrane and intracellular compartments could be detected in this cell-hue. Approximately 15% of the surface receptors were resistant to down-regulation, possibly indicating receptor heterogeneity. Down-regulation persisted ibr up to 96 hr and was accompanied by a decrease in MSH receptor mRNA levels 48 hr after treatment. However, before this time, transcript levels were the same in treated and control cells. In contrast to what was seen with NDP-MSH, cell surface receptors removed with trypsin wc:re rapidly replaced. These results show that NDP-MSH not only induced MSH receptor :internalization but also inhibited receptor turnover, resulting in a prolonged down-regulation. It is concluded that, in B16 cells, the MSH receptor undergoes ligand-dependent internalization, resulting in a prolonged down-regulation. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
CD40-1igand (CD40-L), a member of the tumour necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. CD40 is expressed by B cells, monocytes and dendritic cells. Interactions between CD40-L and CD40 induce B cell proliferation, differentiation, immunoglobulin production and isotype switching as well as monocyte activation and dendritic cell differentiation. Since the rheumatoid synovium is characterized by T cell activation, B cell immunoglobulin production, monocyte cytokine production and dendritic cell differentiation, the expression and function of CD40-L in RA was examined. RA synovial fluid (SF) T ceils expressed CD40-L mRNA, as well as low level cell surface CD40-L. A subset of CD4+ RA synovial fluid T cells could express cell surface CD40-L within 15 rain of in vitro activation even in the presence of cycloheximide. CD40-L expressed by RA SF T cells was functional, since RA SF T cells, but not normal PB T cells, stimulated CD40-L dependent B cell immunoglobulin production in the absence of in vitro T cell activation. These data indicate that SF T cells express functionally significant levels of surface CD40-L, and have the potential for rapid upregulation of surface expression from preformed CD40-L stores. Thus, CD40-L is likely to play a central role in the perpetuation of RA by induction of Ig synthesis, cytokine production and dendritic cell differentiation. Moreover, the data provide important evidence of recent activation of RA synovial T cells. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.
Resumo:
CD40 ligand (CD40-L), a member of the tumor necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. Interactions between CD40-L and CD40 induce B cell immunoglobulin production as well as monocyte activation and dendritic cell differentiation. Since these features characterize rheumatoid arthritis (RA), the expression and function of CD40-L in RA was examined. Freshly isolated RA peripheral blood (PB) and synovial fluid (SF)T cells expressed CD40-L mRNA as well as low level cell surface CD40-L. An additional subset of CD4+ RA SF T cells upregulated cell surface CD40-L expression within 15 min of in vitro activation even in the presence of cycloheximide, but soluble CD40-L was not found in SF. CD40-L expressed by RA T cells was functional, since RA PB and SF T cells but not normal PB T cells stimulated CD40-L-dependent B cell immunoglobulin production and dendritic cell IL-12 expression in the absence of prolonged in vitro T cell activation. In view of the diverse proinflammatory effects of CD40-L, this molecule is likely to play a central role in the perpetuation of rheumatoid synovitis. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.
Resumo:
We present a case of autoimmune lymphoproliferative syndrome (ALPS) caused by a previously undescribed minimal deletion in the death domain of the FAS gene. ALPS is an uncommon disease associated with an impaired Fas-mediated apoptosis. The patient presented with a history of splenomegaly since 4 months of age, associated with cervical lymphadenopathy, which improved with oral corticosteroid treatment. Relevant laboratory findings were the presence of anemia, thrombocytopenia, and positive direct and indirect Coombs tests. He was not an offspring of consanguineous parents. Two cervical lymph node biopsies were performed, at 4 years and at 6 years of age. In both lymph nodes, there was marked paracortical expansion by lymphocytes in variable stages of immunoblastic transformation and a very high cell proliferating index. Some clear cells were also present, raising the suspicion of malignant lymphoma. In one of the lymph nodes, there was also a focus rich in large histiocytes with round nuclei and emperipolesis, consistent with focal Rosai-Dorfman disease. Immunostaining showed numerous CD3+ cells, many of which were double-negative (CD4- CD8-) and expressed CD57, especially around the follicles. Molecular studies of the lymph node biopsy showed a point deletion (4-base pair deletion) in exon 9 of the FAS gene (930del TGCT), which results in 3 missense amino acids. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma), such as 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ(2)-mediated activation of PPAR-gamma ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ(2) administration decreases leukocyte rolling and adhesion to the inflammated mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS(-/-) mice were not susceptible to 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ(2)-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, up-regulation of carrageenan-triggered ICAM-I expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ(2), whereas 15d-PGJ(2) inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ(2) suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues.
Resumo:
To identify novel genes involved in the molecular pathogenesis of chronic lymphocytic leukemia (CLL) we performed a serial analysis of gene expression (SAGE) in CLL cells, and compared this with healthy B cells (nCD19(+)). We found a high level of similarity among CLL subtypes, but a comparison of CLL versus nCD19(+) libraries revealed 55 genes that were over-represented and 49 genes that were down-regulated in CLL. A gene ontology analysis revealed that TOSO, which plays a functional role upstream of Fas extrinsic apoptosis pathway, was over-expressed in CLL cells. This finding was confirmed by real-time reverse transcription-polymerase chain reaction in 78 CLL and 12 nCD19(+) cases (P <.001). We validated expression using flow cytometry and tissue microarray and demonstrated a 5.6-fold increase of TOSO protein in circulating CLL cells (P =.013) and lymph nodes (P =.006). Our SAGE results have demonstrated that TOSO is a novel overexpressed antiapoptotic gene in CLL.
Resumo:
Background. Defects in apoptosis signaling have been considered to be responsible for treatment failure in many types of cancer, although with controversial results. The objective of the present study was to assess the expression profile of key apoptosis-related genes in terms of clinical and biological variables and of the survival of children with acute lymphoblastic leukemia (ALL). Procedure. The levels of mRNA expression of the apoptosis-related genes CASP3, CASP8, CASP9, FAS, and BCL2 were analyzed by quantitative real-time PCR in consecutive samples from 139 consecutive children with ALL at diagnosis treated by the Brazilian protocol (GBTLI-ALL 99). Gene expression levels and clinical and biological features were compared by the Mann-Whitney test. Event-free survival (EFS) was calculated by Kaplan-Meier plots and log-rank test. Results. A significant correlation was detected between CASP3, CASP8, CASP9, and FAS expression levels (P<0.01) in ALL samples. Higher levels of BCL2 were significantly associated with white blood cell (WBC) count <50,000/mm(3) at diagnosis (P=0.01) and low risk group classification (P=0.008). Lower expression levels of CASP3, CASP8 and FAS gene were associated with a poor response at day 7 according the GBTLI-ALL 99 protocol (P=0.03, P=0.02 and P=0.008, respectively). There was a relationship between FAS gene expression lower than the 75th percentile and lower 5-year EFS (P=0.02). Conclusion. These findings suggest an association between lower expression levels of the pro-apoptotic genes and a poor response to induction therapy at day 7 and prognosis in childhood ALL. Pediatr Blood Cancer 2010;55:100-107. (C) 2010 Wiley-Liss, Inc.
Resumo:
PD-1 and PD-L1 can be involved in tumor escape, and little is known about the role of these molecules in oral tumors or pre-malignant lesions. In the present study, we investigated the expression of PD-1 and PD-L1 in the blood and lesion samples of patients with actinic cheilitis (AC) and oral squamous cell carcinoma (OSCC). Our results showed that lymphocytes from peripheral blood and tissue samples exhibited high expression of PD-1 in both groups analyzed. Patients with AC presented higher percentage as well as the absolute numbers of CD4(+)PD-1(+) and CD8(+)PD-1(+) lymphocytes in peripheral blood mononuclear cells (PBMC) than healthy individuals, while patients with OSCC presented an increased frequency of CD8(+)PD1(+) in PBMC when compared with controls. On the other hand, increased frequency of CD4(+) and CD8(+) T cells expressing PD-1(+) accumulate in samples from OSCC, and the expression of PD-L1 was intense in OSCC and moderate in AC lesion sites. Lower levels of IFN-gamma and higher levels of TGF-beta were detected in OSCC samples. Our data demonstrate that PD-1 and PD-L1 molecules are present in blood and samples of AC and OSCC patients. Further studies are required to understand the significance of PD-1 and PD-L1 in oral tumors microenvironment.
Resumo:
Receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) are expressed in apical periodontitis, suggesting a role for these molecules during lesion development. However, the profiles of RANKL/OPG expression in periapical lesions remain unknown. In this study we investigated the patterns of RANKL and OPG mRNA expression by real-time polymerase chain reaction in human periapical granulomas (N = 44) and compared them with sites presenting characteristic bone resorbing activity: healthy (n = 14) and orthodontically stretched and compressed periodontal ligament (n = 26), healthy gingiva (n = 24), chronic gingivitis (n = 32), and chronic periodontitis (n = 34) samples. Both RANKL and OPG mRNA expression was higher in periapical granulomas when compared with healthy periodontal ligament. Distinct patterns of RANKL and OPG expression ratio were found in the granulomas and in different physiologic and pathologic conditions, with characteristic bone resorption activity potentially being indicative of the stable or progressive nature of the lesions. Lesions with radiographic image smaller than 5 mm showed higher RANKL/OPG expression than images greater than 5 mm. Periapical granulomas presented heterogeneous patterns of RANKL and OPG expression, ranging from samples with RANKL/OPG ratio similar to that seen in sites with minimal or absent bone resorption to samples with RANKL/OPG expression pattern comparable with active bone resorption sites.