980 resultados para Famatinian Belt
Resumo:
The marine transgression Into the Baltic Sea through the Great Belt took place around 9,370 calibrated C-14-years B.P. The sedimentary sequence from the early brackish phase and the change to marine conditions has been investigated in detail through C-14-datings, and oxygen and carbon isotope measurements, and is interpreted by comparison with modern analogs. The oldest brackish sediments are the strongly laminated clays and silts rich in organic carbon followed by non-laminated heavily bioturbated silts. The bedding and textural characteristics and stable isotope analyses on Ammonia beccarii (dextral) and A. beccarii (sinistral) show that the deposltlonal conditions respond to a change at about 9,100 cal. a B.P. from an unstratified brackish water environment in the initial stage of the Littorina Transgression to a thermohaline layered milieu in the upper unit. The oxygen isotope results indicate that the bottom waters of this latter period had salinities and temperatures comparable to the present day Kiel Bay waters. The isotopic composition of the total organic carbon and the d13C-values of A. beccarii reveal a gradual change from an initially lacustrine/terrestrial provenance toward a brackish/marine dominated depositional environment. A stagnation of the sea level at around 9,100 to 9,400 B.P. is indicated.
Resumo:
Current geochronological data on the Okhotsk-Chukotka volcanic belt (OCVB) and relevant problems are discussed. The belt evolution is suggested to be modeled based on 40Ar/39Ar and U-Pb dates more useful in several aspects than common K-Ar or Rb-Sr dates and methods of paleobotanical correlation. Based on new40Ar/39Ar and U-Pb dates obtained for volcanic rocks in the OCVB northern part, the younger (Coniacian) age is established for lower stratigraphic units in the Central Chukotka segment of the belt, and eastward migration of volcanic activity is shown for terminal stages of this structure evolution.
Resumo:
Mining in the Iberian Pyrite Belt (IPB), the biggest VMS metallogenetic province known in the world to date, has to face a deep crisis in spite of the huge reserves still known after ≈5 000 years of production. This is due to several factors, as the difficult processing of complex Cu-Pb-Zn-Ag- Au ores, the exhaustion of the oxidation zone orebodies (the richest for gold, in gossan), the scarce demand for sulphuric acid in the world market, and harder environmental regulations. Of these factors, only the first and the last mentioned can be addressed by local ore geologists. A reactivation of mining can therefore only be achieved by an improved and more efficient ore processing, under the constraint of strict environmental controls. Digital image analysis of the ores, coupled to reflected light microscopy, provides a quantified and reliable mineralogical and textural characterization of the ores. The automation of the procedure for the first time furnishes the process engineers with real-time information, to improve the process and to preclude or control pollution; it can be applied to metallurgical tailings as well. This is shown by some examples of the IPB.
Resumo:
This work implements an optimization of the phosphorus gettering effect during the contact co-firing step by means of both simulations and experiments in an industrial belt furnace. An optimized temperature profile, named ‘extended co-firing step’, is presented. Simulations show that the effect of the short annealing on the final interstitial iron concentration depends strongly on the initial contamination level of the material and that the ‘extended co-firing’ temperature profile can enhance the gettering effect within a small additional time. Experimental results using sister wafers from the same multicrystalline silicon ingot confirm these trends and show the potential of this new defect engineering tool to improve the solar cell efficiency.