792 resultados para FUTURES MARKETS
Resumo:
Portugal had only very few foresight exercises on the automobile sector, and the most recent one was a survey held in a project on work organisation systems in the automobile industry, its recent historical paths and the special strategies of location of companies (the WorTiS project). This involved several teams with different disciplinary backgrounds and from two Portuguese universities. The provisional main results of the first round of a Delphi survey held in Portugal on the automotive sector were already published, but a further analysis was not yet done. This foresight survey was done under the WorTiS project, developed in 2004 by IET – Research Centre on Enterprise and Work Innovation (at FCT-UNL), and financed by the Portuguese Ministry of Science and Technology. Some of this experience on foresight analysis is also been transferred to other projects, namely the WORKS project on work organisation restructuring in the knowledge society that received the support from EC and still is running. The majority of experts considered having an average of less knowledge in almost all the scenario topics presented. This means that information on the automotive industry is not spread enough among academics or experts in related fields (regional scientists, innovation economists, engineers, sociologists). Some have a good knowledge but in very specialised fields. Others have expertise on foresight, or macroeconomics, or management sciences, but feel insecure on issues related with futures of automobile sector. Nevertheless, we considered specially the topics where the experts considered themselves to have some knowledge. There were no “irrelevant” topics considered as such by the expert panel. There are also no topics that are not considered a need for co-operation. The lack of technological infrastructures was not considered as a hindered factor for the accomplishment of any scenario. The experts’ panel considered no other international competence besides US, Japan or Germany in these topics. Special focus will be made in this paper on the topic 2. Public policy and automobile industries, and more specifically on the technological and/or research policies issues, where one can specify the automobile’s role in transport policies with further implications like environment, safety, energy, mobility.
Resumo:
The Knowledge-based society brought a new way of living and working. The increasing decline of work in primary sector and traditional industries, related with the significant increase of employment in the service sector and in the knowledge work, changed the way companies and individuals establish their relations, the way work and life is organised. These changes are usual and fast and so the feeling of insecurity and unpredictability become more and more sharp. In this context, foresight exercises are necessary tools helping in the identification of the key variables and main trends of evolution. This report will present some foresight studies about work and skills in Europe and USA, in order to contribute to think about possible evolutions and trends.
Resumo:
Electricity markets are systems for effecting the purchase and sale of electricity using supply and demand to set energy prices. Two major market models are often distinguished: pools and bilateral contracts. Pool prices tend to change quickly and variations are usually highly unpredictable. In this way, market participants often enter into bilateral contracts to hedge against pool price volatility. This article addresses the challenge of optimizing the portfolio of clients managed by trader agents. Typically, traders buy energy in day-ahead markets and sell it to a set of target clients, by negotiating bilateral contracts involving three-rate tariffs. Traders sell energy by considering the prices of a reference week and five different types of clients. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.
Resumo:
This paper presents a methodology to establish investment and trading strategies of a power generation company. These strategies are integrated in the ITEM-Game simulator in order to test their results when played against defined strategies used by other players. The developed strategies are focused on investment decisions, although trading strategies are also implemented to obtain base case results. Two cases are studied considering three players with the same trading strategy. In case 1, all players also have the same investment strategy driven by a market target share. In case 2, player 1 has an improved investment strategy with a target share twice of the target of players 2 and 3. Results put in evidence the influence of the CO2 and fuel prices in the company investment decision. It is also observed the influence of the budget constraint which might prevent the player to take the desired investment decision.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff. © 2014 IEEE.
Resumo:
The electricity industry throughout the world, which has long been dominated by vertically integrated utilities, has experienced major changes. Deregulation, unbundling, wholesale and retail wheeling, and real-time pricing were abstract concepts a few years ago. Today market forces drive the price of electricity and reduce the net cost through increased competition. As power markets continue to evolve, there is a growing need for advanced modeling approaches. This article addresses the challenge of maximizing the profit (or return) of power producers through the optimization of their share of customers. Power producers have fixed production marginal costs and decide the quantity of energy to sell in both day-ahead markets and a set of target clients, by negotiating bilateral contracts involving a three-rate tariff. Producers sell energy by considering the prices of a reference week and five different types of clients with specific load profiles. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.
Resumo:
As it is well known, competitive electricity markets require new computing tools for power companies that operate in retail markets in order to enhance the management of its energy resources. During the last years there has been an increase of the renewable penetration into the micro-generation which begins to co-exist with the other existing power generation, giving rise to a new type of consumers. This paper develops a methodology to be applied to the management of the all the aggregators. The aggregator establishes bilateral contracts with its clients where the energy purchased and selling conditions are negotiated not only in terms of prices but also for other conditions that allow more flexibility in the way generation and consumption is addressed. The aggregator agent needs a tool to support the decision making in order to compose and select its customers' portfolio in an optimal way, for a given level of profitability and risk.
Resumo:
Nesta tese estudamos os efeitos de contágio financeiro e de memória longa causados pelas crises financeiras de 2008 e 2010 em alguns mercados acionistas internacionais. A tese é composta por três ensaios interligados. No Ensaio 1, recorremos à teoria das cópulas para testar a existência de contágio e revelar os canais “investor induced” de transmissão da crise de 2008 aos mercados da Bélgica, França, Holanda e Portugal (grupo NYSE Euronext). Concluímos que existe contágio nestes mercados, que o canal “portfolio rebalancing” é o mecanismo mais importante de transmissão da crise, e que o fenómeno “flight to quality” está presente nos mercados. No Ensaio 2, usando novamente modelos de cópulas, avaliamos os efeitos de contágio provocados pelo mercado acionista grego nos mercados do grupo NYSE Euronext, no contexto da crise de 2010. Os resultados obtidos sugerem que durante a crise de 2010 apenas o mercado português foi objeto de contágio; além disso, conclui-se que os efeitos de contágio provocados pela crise de 2008 são claramente superiores aos efeitos provocados pela crise de 2010. No Ensaio 3, abordamos o tema da memória longa através do estudo do expoente de Hurst dos mercados acionistas da Bélgica, E.U.A., França, Grécia, Holanda, Japão, Reino Unido e Portugal. Verificamos que as propriedades de memória longa dos mercados foram afetadas pelas crises, especialmente a de 2008 – que aumentou a memória longa dos mercados e tornou-os mais persistentes. Finalmente, usando cópulas mais uma vez, verificamos que as crises provocaram, em geral, um aumento na correlação entre os expoentes de Hurst locais dos mercados foco das crises (E.U.A. e Grécia) e os expoentes de Hurst locais dos outros mercados da amostra, sugerindo que o expoente de Hurst pode ser utilizado para detetar efeitos de contágio financeiro. Em síntese, os resultados desta tese sugerem que comparativamente com períodos de acalmia, os períodos de crises financeiras tendem a provocar ineficiência nos mercados acionistas e a conduzi-los na direção da persistência e do contágio financeiro.
Resumo:
"It is a widely accepted fact that the consumption-based capital asset pricing model (CCAPM) fails to provide a good explanation of many important features of the behaviour of financial market returns in a large range of countries over a long period of time. However, within a representative consumer/investor model, it is hard to see how the basic structure of the consumption based model can be safely abandoned." [introdução]
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
This paper presents a coordination approach to maximize the total profit of wind power systems coordinated with concentrated solar power systems, having molten-salt thermal energy storage. Both systems are effectively handled by mixed-integer linear programming in the approach, allowing enhancement on the operational during non-insolation periods. Transmission grid constraints and technical operating constraints on both systems are modeled to enable a true management support for the integration of renewable energy sources in day-ahead electricity markets. A representative case study based on real systems is considered to demonstrate the effectiveness of the proposed approach. © IFIP International Federation for Information Processing 2015.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, performed so that the competitiveness could be increased, but with exponential implications in the increase of the complexity and unpredictability in those markets’ scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behavior. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This paper presents the Multi-Agent System for Competitive Electricity Markets (MASCEM) – a simulator based on multi-agent technology that provides a realistic platform to simulate electricity markets, the numerous negotiation opportunities and the participating entities.
Resumo:
This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.