990 resultados para FSI numerical technique
Resumo:
In this paper, we are considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed to solve the constrained optimization problem. Finally, a numerical example is given and the results show that the method of solution is robust.
Resumo:
A general technique for transforming a timed finite state automaton into an equivalent automated planning domain based on a numerical parameter model is introduced. Timed transition automata have many applications in control systems and agents models; they are used to describe sequential processes, where actions are labelling by automaton transitions subject to temporal constraints. The language of timed words accepted by a timed automaton, the possible sequences of system or agent behaviour, can be described in term of an appropriate planning domain encapsulating the timed actions patterns and constraints. The time words recognition problem is then posed as a planning problem where the goal is to reach a final state by a sequence of actions, which corresponds to the timed symbols labeling the automaton transitions. The transformation is proved to be correct and complete and it is space/time linear on the automaton size. Experimental results shows that the performance of the planning domain obtained by transformation is scalable for real world applications. A major advantage of the planning based approach, beside of the solving the parsing problem, is to represent in a single automated reasoning framework problems of plan recognitions, plan synthesis and plan optimisation.
Resumo:
2000 Mathematics Subject Classification: 26A33 (primary), 35S15
Resumo:
A cost-effective radio over fiber system to up-convert and transmit multigigabit signals at 60 GHz is presented. A low intermediate frequency OFDM signal is used to directly modulate a laser, which is combined with an independent unmodulated laser. The generated millimeter wave frequency can be adjusted by tuning the frequency separation between the lasers. Since no external modulator is required, this technique is low-cost and it is easily integrable in a single chip. In this paper, we present numerical results showing the feasibility of generating an IEEE 802.15.3c compliant 3.5-Gbps 60-GHz OFDM. We show that received signal quality is not limited by the lasers' linewidth but by the relative intensity noise. © 2013 IEEE.
Resumo:
Ellipsometry is a well known optical technique used for the characterization of reflective surfaces in study and films between two media. It is based on measuring the change in the state of polarization that occurs as a beam of polarized light is reflected from or transmitted through the film. Measuring this change can be used to calculate parameters of a single layer film such as the thickness and the refractive index. However, extracting these parameters of interest requires significant numerical processing due to the noninvertible equations. Typically, this is done using least squares solving methods which are slow and adversely affected by local minima in the solvable surface. This thesis describes the development and implementation of a new technique using only Artificial Neural Networks (ANN) to calculate thin film parameters. The new method offers a speed in the orders of magnitude faster than preceding methods and convergence to local minima is completely eliminated.
Resumo:
In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.
Resumo:
The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.
We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode.
We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.
The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.
Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.
The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.
Resumo:
This Licentiate Thesis is devoted to the presentation and discussion of some new contributions in applied mathematics directed towards scientific computing in sports engineering. It considers inverse problems of biomechanical simulations with rigid body musculoskeletal systems especially in cross-country skiing. This is a contrast to the main research on cross-country skiing biomechanics, which is based mainly on experimental testing alone. The thesis consists of an introduction and five papers. The introduction motivates the context of the papers and puts them into a more general framework. Two papers (D and E) consider studies of real questions in cross-country skiing, which are modelled and simulated. The results give some interesting indications, concerning these challenging questions, which can be used as a basis for further research. However, the measurements are not accurate enough to give the final answers. Paper C is a simulation study which is more extensive than paper D and E, and is compared to electromyography measurements in the literature. Validation in biomechanical simulations is difficult and reducing mathematical errors is one way of reaching closer to more realistic results. Paper A examines well-posedness for forward dynamics with full muscle dynamics. Moreover, paper B is a technical report which describes the problem formulation and mathematical models and simulation from paper A in more detail. Our new modelling together with the simulations enable new possibilities. This is similar to simulations of applications in other engineering fields, and need in the same way be handled with care in order to achieve reliable results. The results in this thesis indicate that it can be very useful to use mathematical modelling and numerical simulations when describing cross-country skiing biomechanics. Hence, this thesis contributes to the possibility of beginning to use and develop such modelling and simulation techniques also in this context.
Resumo:
Hybrid simulation is a technique that combines experimental and numerical testing and has been used for the last decades in the fields of aerospace, civil and mechanical engineering. During this time, most of the research has focused on developing algorithms and the necessary technology, including but not limited to, error minimisation techniques, phase lag compensation and faster hydraulic cylinders. However, one of the main shortcomings in hybrid simulation that has pre- vented its widespread use is the size of the numerical models and the effect that higher frequencies may have on the stability and accuracy of the simulation. The first chapter in this document provides an overview of the hybrid simulation method and the different hybrid simulation schemes, and the corresponding time integration algorithms, that are more commonly used in this field. The scope of this thesis is presented in more detail in chapter 2: a substructure algorithm, the Substep Force Feedback (Subfeed), is adapted in order to fulfil the necessary requirements in terms of speed. The effects of more complex models on the Subfeed are also studied in detail, and the improvements made are validated experimentally. Chapters 3 and 4 detail the methodologies that have been used in order to accomplish the objectives mentioned in the previous lines, listing the different cases of study and detailing the hardware and software used to experimentally validate them. The third chapter contains a brief introduction to a project, the DFG Subshake, whose data have been used as a starting point for the developments that are shown later in this thesis. The results obtained are presented in chapters 5 and 6, with the first of them focusing on purely numerical simulations while the second of them is more oriented towards a more practical application including experimental real-time hybrid simulation tests with large numerical models. Following the discussion of the developments in this thesis is a list of hardware and software requirements that have to be met in order to apply the methods described in this document, and they can be found in chapter 7. The last chapter, chapter 8, of this thesis focuses on conclusions and achievements extracted from the results, namely: the adaptation of the hybrid simulation algorithm Subfeed to be used in conjunction with large numerical models, the study of the effect of high frequencies on the substructure algorithm and experimental real-time hybrid simulation tests with vibrating subsystems using large numerical models and shake tables. A brief discussion of possible future research activities can be found in the concluding chapter.
Resumo:
This paper describes two new techniques designed to enhance the performance of fire field modelling software. The two techniques are "group solvers" and automated dynamic control of the solution process, both of which are currently under development within the SMARTFIRE Computational Fluid Dynamics environment. The "group solver" is a derivation of common solver techniques used to obtain numerical solutions to the algebraic equations associated with fire field modelling. The purpose of "group solvers" is to reduce the computational overheads associated with traditional numerical solvers typically used in fire field modelling applications. In an example, discussed in this paper, the group solver is shown to provide a 37% saving in computational time compared with a traditional solver. The second technique is the automated dynamic control of the solution process, which is achieved through the use of artificial intelligence techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxation using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate the potential for enhanced solution reliability due to obtaining acceptable convergence within each time step, unlike some of the comparison simulations.
Resumo:
In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method.
Resumo:
To gain a better understanding of the fluid–structure interaction and especially when dealing with a flow around an arbitrarily moving body, it is essential to develop measurement tools enabling the instantaneous detection of moving deformable interface during the flow measurements. A particularly useful application is the determination of unsteady turbulent flow velocity field around a moving porous fishing net structure which is of great interest for selectivity and also for the numerical code validation which needs a realistic database. To do this, a representative piece of fishing net structure is used to investigate both the Turbulent Boundary Layer (TBL) developing over the horizontal porous moving fishing net structure and the turbulent flow passing through the moving porous structure. For such an investigation, Time Resolved PIV measurements are carried out and combined with a motion tracking technique allowing the measurement of the instantaneous motion of the deformable fishing net during PIV measurements. Once the two-dimensional motion of the porous structure is accessed, PIV velocity measurements are analyzed in connection with the detected motion. Finally, the TBL is characterized and the effect of the structure motion on the volumetric flow rate passing though the moving porous structure is clearly demonstrated.
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.
Resumo:
Recent years have seen an astronomical rise in SQL Injection Attacks (SQLIAs) used to compromise the confidentiality, authentication and integrity of organisations’ databases. Intruders becoming smarter in obfuscating web requests to evade detection combined with increasing volumes of web traffic from the Internet of Things (IoT), cloud-hosted and on-premise business applications have made it evident that the existing approaches of mostly static signature lack the ability to cope with novel signatures. A SQLIA detection and prevention solution can be achieved through exploring an alternative bio-inspired supervised learning approach that uses input of labelled dataset of numerical attributes in classifying true positives and negatives. We present in this paper a Numerical Encoding to Tame SQLIA (NETSQLIA) that implements a proof of concept for scalable numerical encoding of features to a dataset attributes with labelled class obtained from deep web traffic analysis. In the numerical attributes encoding: the model leverages proxy in the interception and decryption of web traffic. The intercepted web requests are then assembled for front-end SQL parsing and pattern matching by applying traditional Non-Deterministic Finite Automaton (NFA). This paper is intended for a technique of numerical attributes extraction of any size primed as an input dataset to an Artificial Neural Network (ANN) and statistical Machine Learning (ML) algorithms implemented using Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic Regression (TCLR) respectively. This methodology then forms the subject of the empirical evaluation of the suitability of this model in the accurate classification of both legitimate web requests and SQLIA payloads.
Resumo:
Over the last decade, rapid development of additive manufacturing techniques has allowed the fabrication of innovative and complex designs. One field that can benefit from such technology is heat exchanger fabrication, as heat exchanger design has become more and more complex due to the demand for higher performance particularly on the air side of the heat exchanger. By employing the additive manufacturing, a heat exchanger design was successfully realized, which otherwise would have been very difficult to fabricate using conventional fabrication technologies. In this dissertation, additive manufacturing technique was implemented to fabricate an advanced design which focused on a combination of heat transfer surface and fluid distribution system. Although the application selected in this dissertation is focused on power plant dry cooling applications, the results of this study can directly and indirectly benefit other sectors as well, as the air-side is often the limiting side for in liquid or single phase cooling applications. Two heat exchanger designs were studied. One was an advanced metallic heat exchanger based on manifold-microchannel technology and the other was a polymer heat exchanger based on utilization of prime surface technology. Polymer heat exchangers offer several advantages over metals such as antifouling, anticorrosion, lightweight and often less expensive than comparable metallic heat exchangers. A numerical modeling and optimization were performed to calculate a design that yield an optimum performance. The optimization results show that significant performance enhancement is noted compared to the conventional heat exchangers like wavy fins and plain plate fins. Thereafter, both heat exchangers were scaled down and fabricated using additive manufacturing and experimentally tested. The manifold-micro channel design demonstrated that despite some fabrication inaccuracies, compared to a conventional wavy-fin surface, 15% - 50% increase in heat transfer coefficient was possible for the same pressure drop value. In addition, if the fabrication inaccuracy can be eliminated, an even larger performance enhancement is predicted. Since metal based additive manufacturing is still in the developmental stage, it is anticipated that with further refinement of the manufacturing process in future designs, the fabrication accuracy can be improved. For the polymer heat exchanger, by fabricating a very thin wall heat exchanger (150μm), the wall thermal resistance, which usually becomes the limiting side for polymer heat exchanger, was calculated to account for only up to 3% of the total thermal resistance. A comparison of air-side heat transfer coefficient of the polymer heat exchanger with some of the commercially available plain plate fin surface heat exchangers show that polymer heat exchanger performance is equal or superior to plain plate fin surfaces. This shows the promising potential for polymer heat exchangers to compete with conventional metallic heat exchangers when an additive manufacturing-enabled fabrication is utilized. Major contributions of this study are as follows: (1) For the first time demonstrated the potential of additive manufacturing in metal printing of heat exchangers that benefit from a sophisticated design to yield a performance substantially above the respective conventional systems. Such heat exchangers cannot be fabricated with the conventional fabrication techniques. (2) For the first time demonstrated the potential of additive manufacturing to produce polymer heat exchangers that by design minimize the role of thermal conductivity and deliver a thermal performance equal or better that their respective metallic heat exchangers. In addition of other advantages of polymer over metal like antifouling, anticorrosion, and lightweight. Details of the work are documented in respective chapters of this thesis.