910 resultados para FREEPLAY NONLINEARITY
Resumo:
Nonlinearity management in transmission lines with periodic dispersion compensation and hybrid Raman-Erbium doped fiber amplification is studied both analytically and numerically. Different transmission/compensating fiber pairs are considered, with particular focus on the SMF/DCF case. © 2004 Elsevier B.V. All rights reserved.
Resumo:
We report performance enhancements enabled by pre-dispersed spectral inversion equivalent to that of ideal back-propagation, with further x2 increase in reach from multi-channel compensation, with spectral inversion employed upto 400km (from mid-link) with <1dB penalties. © 2012 OSA.
Resumo:
Nonlinearity management is explored as a multilevel tool to obtain maximum transmission reach in a WDM system. A technique for the fast calculation of the optimal dispersion pre-compensation in systems with distributed amplification is proposed. © 2005 Optical Society of America.
Resumo:
A theory of nonlinearity management in transmission lines with periodic dispersion compensation and hybrid Raman-EDFA amplification is developed. Different transmission/compensating fiber pairs performances are compared and the optimal amplification scheme determined for each case.
Resumo:
An approach to nonlinearity management in optical transmission lines with periodic dispersion compensation and distributed Raman amplification was presented. The optimization of a three-step dispersion map with forward and backward pumped distributed amplification was examined. The optimization was performed using the analytical solution obtained under the assumption of undepleted pumps and without inclusion of double Rayleigh Scattering (DRS), and by means of a full numerical approach accounting for all important effects. It was found that both procedures led to the same final solution.
Resumo:
We experimentally demonstrate a novel fibre nonlinearity compensation technique for CO-OFDM based on phase-conjugated pilots (PCPs), showing that, by varying the PCP overhead a performance improvement up to 4 dB can be achieved allowing highly flexible adaptation to link characteristics.
Resumo:
We demonstrate a novel subcarrier coding scheme combined with pre-EDC for fibre nonlinearity mitigation in CO-OFDM, showing that a performance improvement of 1.5 dB can be achieved in a 150 Gb/s BPSK PDM CO-OFDM transmission.
Resumo:
We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.
Resumo:
We report that, contrary to common perception, intra-channel nonlinearity compensation offers significant improvements of up to 4dB, in nonlinear tolerance (Q-factor), in a flexible traffic scenario, and further improvements with increasing local link dispersion, for an optical transport network employing flexible 28Gbaud PM-mQAM transponders.
Resumo:
Nonlinearity management is explored as a complete tool to obtain maximum transmission reach in a WDM fiber transmission system, making it possible to optimize multiple system parameters, including optimal dispersion pre-compensation, with fast simulations based on the continuous-wave approximation. © 2006 Optical Society of America.
Resumo:
Георги Венков, Христо Генев - Разглеждаме един клас от L^2 - критични нелинейни уравнения на Шрьодингер в R^(1+n) с конволюционна нелинейност от тип Хартри. Целта ни е да установим локалното и глобално съществуване на решенията, както и коректност на задачата на Коши в достатъчно малка околност на нулата в пространството L^2 (R^n). Като естествено следствие на глобалните резултати ние доказваме съществуване на оператор на разсейване за малки начални условия.
Resumo:
In this paper, we demonstrate through computer simulation and experiment a novel subcarrier coding scheme combined with pre-electrical dispersion compensation (pre-EDC) for fiber nonlinearity mitigation in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. As the frequency spacing in CO-OFDM systems is usually small (tens of MHz), neighbouring subcarriers tend to experience correlated nonlinear distortions after propagation over a fiber link. As a consequence, nonlinearity mitigation can be achieved by encoding and processing neighbouring OFDM subcarriers simultaneously. Herein, we propose to adopt the concept of dual phase conjugated twin wave for CO-OFDM transmission. Simulation and experimental results show that this simple technique combined with 50% pre-EDC can effectively offer up to 1.5 and 0.8 dB performance gains in CO-OFDM systems with BPSK and QPSK modulation formats, respectively.
Resumo:
In this paper, we demonstrate a novel fiber nonlinearity compensation technique for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) systems based on the transmission of phase-conjugated pilots (PCPs). In this scheme, a portion of OFDM subcarriers (up to 50%) is transmitted with its phase conjugates, which is used at the receiver to estimate the nonlinear distortions in the respective subcarriers and other subcarriers, which are not accompanied by PCPs. Simulation and experimental results show that by varying the PCP overhead, a performance improvement up to 4 dB can be achieved. In addition, the proposed technique can be effectively applied in both single polarization and polarization-division multiplexed systems, in both single channel and wavelength-division multiplexing systems, thus, offering highest flexibility in implementations.
Resumo:
Optical-phase conjugation nonlinearity compensation (OPC-NLC) in optical networks is evaluated using a built-in tool including self-channel and crosstalk channel interference effects. Though significant improvements are observed, a further refined launch power policy is required to fully take advantage of OPC-NLC capability.