996 resultados para FOREST BIOMASS
Resumo:
Land use leads to massive habitat destruction and fragmentation in tropical forests. Despite its global dimensions the effects of fragmentation on ecosystem dynamics are not well understood due to the complexity of the problem. We present a simulation analysis performed by the individual-based model FORMIND. The model was applied to the Brazilian Atlantic Forest, one of the world`s biodiversity hot spots, at the Plateau of Sao Paulo. This study investigates the long-term effects of fragmentation processes on structure and dynamics of different sized remnant tropical forest fragments (1-100 ha) at community and plant functional type (PFT) level. We disentangle the interplay of single effects of different key fragmentation processes (edge mortality, increased mortality of large trees, local seed loss and external seed rain) using simulation experiments in a full factorial design. Our analysis reveals that particularly small forest fragments below 25 ha suffer substantial structural changes, biomass and biodiversity loss in the long term. At community level biomass is reduced up to 60%. Two thirds of the mid- and late-successional species groups, especially shade-tolerant (late successional climax) species groups are prone of extinction in small fragments. The shade-tolerant species groups were most strongly affected; its tree number was reduced more than 60% mainly by increased edge mortality. This process proved to be the most powerful of those investigated, explaining alone more than 80% of the changes observed for this group. External seed rain was able to compensate approximately 30% of the observed fragmentation effects for shade-tolerant species. Our results suggest that tropical forest fragments will suffer strong structural changes in the long term, leading to tree species impoverishment. They may reach a new equilibrium with a substantially reduced subset of the initial species pool, and are driven towards an earlier successional state. The natural regeneration potential of a landscape scattered with forest fragments appears to be limited, as external seed rain is not able to fully compensate for the observed fragmentation-induced changes. Our findings suggest basic recommendations for the management of fragmented tropical forest landscapes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The smouldering process of wood logs was studied experimentally in a laboratory facility and in prescribed forest bums. The main goal was to check the parameters that initiate and control the stability of the smouldering process. To do so, sample temperatures at five different locations and concentrations of CO, CO2 and O-2 were measured and discussed. By varying the temperature and air supply of the flow tunnel apparatus, different rates of smoulder propagation were identified. In prescribed bums, the main characteristics of the self-sustained smouldering combustion front in logs of different sizes and species are reported. The average smouldering speed in the field is about one order of magnitude lower than that reported for different materials in laboratory experiments. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Between January and December 1996, the food habits of a relict population of jaguars were studied in 220 km(2) Linhares Forest Preserve, which comprises much of the remaining old-growth Atlantic Forest of Espirito Santo, Brazil. Fecal analysis indicated opportunistic feeding on 24 prey species (N = 101 scats). Mammals represented 87 percent of the total items, followed by reptiles (9.8%) and birds (2.8%). Considering prey weight, 23.4 percent of the items weighed 1-3 kg, 40.5 percent were 3-10 kg, and 27.7 percent weighed more than 10 kg. Analysis of relative prey frequency and biomass indicated that the diet was concentrated in two prey types: long-nosed armadillo and white-lipped peccary. Literature data suggest that forest jaguars rely on the same mammal prey over their entire geographic range.
Resumo:
The quantity and distribution of vegetal biomass are important aspects to consider in ecosystem studies. However, little information is available about Brazil's Pantanal woodland savannas. This work involved the development of regression equations of the aerial biomass and wood volume of native tree species in a region of woodland savanna on Rio Negro farm in the Pantanal of Nhecolandia, Brazil. Samples were taken from 10 trees of each of five species: Protium heptaphyllum (Aub1.) Marchand, Magonia pubescens A. St.-Hil., Diptychandra aurantiaca Tul., Terminalia argentea Mart. and Zucc. and Licania minutiflora (Sagot) Fritsch and from a miscellaneous group of I I different species. Linear and nonlinear regression analyses were developed relating the diameter at breast height to the dry weight of wood, branches and leaves, wood volume and total aerial biomass. All the regressions showed a significance of P < 0.05 and an R-2 close to or above 0.8. The biomass curve predicted by linear regression analysis of the studied species was similar to the nonlinear regression, with the exception of L. minutiflora and the miscellaneous group. The breast height diameter proved a good choice for estimating biomass and wood volume. The estimated wood volume and biomass of the Pantanal woodland savanna is crucial information for understanding the carbon cycle and for ensuring the region's conservation and sustainable use. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Epiphytes constitute a great part of the vegetation biomass in Neotropical forests, offering a large variety of resources to birds. Despite their structural and ecological importance, few studies investigated the use of epiphytes by birds in the Neotropical region. We studied the bird species that exploit vascular epiphytes (and hemi-epiphytes) in an Atlantic forest site in southeastern Brazil. The resources exploited, seasonal variation in the use of epiphytes, the frequency of foraging and selectivity in epiphytes, and the relationship between the use of epiphytes and the participation in mixed-species bird flocks were investigated. After 360 h of observations along trails crossing the forest, 24 bird species (12 families) were recorded in a total of 74 events of epiphyte exploitation. Thamnophilidae (four species), Trochiliclae, Thraupidae and Furnariidae (three species) were the richest bird families in our sample, while Furnariidae and Dendrocolaptidae were the more frequently recorded families. Plants in the Bromeliaceae and Araceae families were the most abundant and more frequently exploited epiphytes. Nectar, water, nest material and invertebrates were the most frequently exploited resources, mainly from Bromeliaceae. None of the species for which we had enough data revealed to be a frequent user of epiphytes for foraging or selective to any epiphyte group. The White-eyed Foliage-gleaner (Automolus leucophthalmus; Furnariidae), a common participant of understory mixed-species flocks, exploited epiphytes more frequently when associated with mixed-species flocks. The utilization of epiphytes was opportunistic for most of the bird species recorded and occurred throughout the year with no seasonal variation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent alpha = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 +/- 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system. Citation: Negron-Juarez, R. I., J. Q. Chambers, G. Guimaraes, H. Zeng, C. F. M. Raupp, D. M. Marra, G. H. P. M. Ribeiro, S. S. Saatchi, B. W. Nelson, and N. Higuchi (2010), Widespread Amazon forest tree mortality from a single cross-basin squall line event, Geophys. Res. Lett., 37, L16701, doi:10.1029/2010GL043733.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biomass consumption and carbon release rates during the process of forest clearing by fire in five test plots are presented and discussed. The experiments were conducted at the Caiabi Farm near the town of Alta Floresta, state of Mato Grosso, Brazil, in five square plots of 1 ha each designated A, B, C, D, and E, with different locations and timing of fire. Plot A was located in the interface with a pasture, with three edges bordering on the forest, and was cut and burned in 1997. Plots B,C, D, and E were located inside the forest. Plot B was cut and burned in 1997. Plot C was inside a deforested 9-ha area, which was cut and burned in 1998. Plot D was inside a deforested 4-ha area, which was cut in 1998 and burned in 1999. Plot E was inside a deforested 4-ha area which was cut and burned in 1999. Biomass consumption was 22.7%, 19.5%, 47.5%, 61.5% and 41.8%, for A, B, C, D, and E, respectively. The effects of an extended curing period and of increasing the deforested area surrounding the plots could be clearly observed. The consumption for areas cut and burned during the same year, tended toward a value of nearly 50% when presented as a function of the total area burned. The aboveground biomass of the test site and the amount of carbon before the fire were 496 Mg ha-1 and 138 Mg ha-1, respectively. Considering that the biomass that remains unburned keeps about the same average carbon content of fresh biomass, which is supported by the fact that the unburned material consists mainly of large logs and considering the value of 50% for consumption, the amount of carbon released to the atmosphere as gases was 69 Mg ha-1. The amounts of CO2 and CO released to the atmosphere by the burning process were then estimated as 228 Mg ha-1 and 15.9 Mg ha-1, respectively. Observations on fire propagation and general features of the slash burnings in the test areas complete the paper. Copyright 2001 by the American Geophysical Union.
Resumo:
Current estimates of the total biomass in tropical rainforests vary considerably; this is due in large part to the different approaches that are used to calculate biomass. In this study we have used a canopy crane to measure the tree architectures in a 1 ha plot of complex mesophyll vine forest at Cape Tribulation, Australia. Methods were developed to measure and calculate the crown and stem biomass of six major species of tree and palm (Alstonia scholaris (Apocynaceae), Cleistanthus myrianthus (Euphorbiaceae), Endiandra microneura (Lauraceae), Myristica insipida (Myristicaceae), Acmena graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae)) using the unique access provided by the crane. This has allowed the first non-destructive biomass estimate to be carried out for a forest of this type. Allometric equations which relate tree biomass to the measured variable 'diameter at breast height' were developed for the six species, and a general equation was also developed for trees on the plot. The general equation was similar in form to equations developed for tropical rainforests in Brazil and New Guinea. The species equations were applied at the level of families, the generalized equation was applied to the remaining species which allowed the biomass of a total of 680 trees to be calculated. This has provided a current estimate of 270 t ha-1 above-ground biomass at the Australian Canopy Crane site; a value comparable to lowland rainforests in Panama and French Guiana. Using the same tree database seven alternative allometric equations (literature equations for tropical rainforests) were used to calculate the site biomass, the range was large (252-446 t ha-1) with only three equations providing estimates within 34 t ha-1 (12.5%) of the site value. Our use of multiple species-specific allometric equations has provided a site estimate only slightly larger (1%) than that obtained using allometric equations developed specifically for tropical wet rainforests. We have demonstrated that it is possible to non-destructively measure the biomass in a complex forest using an on-site canopy crane. In conjunction the development of crown maps and a detailed tree architecture database allows changes in forest structure to be followed quantitatively. © 2007 Ecological Society of Australia.
Resumo:
In order for the projects of recovery of degraded areas to be successful, it is necessary to have a perfect recovery of the soil where the revegetation will be implanted as an initial action in the recovery of the whole process. The use of native forest species fully adapted to these types of terrain is another aspect of great importance, once the non-selection of these species, even if abundant in the surrounding areas, as it is in our case, implies great mortality of individuals during the planting and their low fixation during the process. The establishment of a monitoring program that contemplates the advancements obtained in the soil, the vegetation and the return of wild animals also collaborate in the evaluation of the success of the process. And, finally, the effective participation of the mining company, accepting and applying the techniques tested and indicated by research, even if, initially, the return time is longer than expected, also guarantees the success of the process. The mining company not only implemented a partnership with important universities in Brazil to obtain solutions for the environmental problems but also applied the developed techniques and the monitoring program. In the present work, we have attempted to summarize important aspects to evaluate the advancements in the rehabilitation plan for those areas, being here presented some results of the monitoring of areas under different levels of recovery, in accordance with the techniques adopted. Biological parameters of the soil were used to verify the efficiency of these different techniques in the recovery process. This work is part of the monitoring program of areas in rehabilitation by the mining company, implemented as of 1999 and in partnership with universities. The microbial activity was determined through the quantification of the carbon and nitrogen microbial biomass (BMC and BMN) and the activity of the dehydrogenase evaluated in the mining floor and tailing areas in different levels of soil preparation and planting of native species. The analysis of the parameters studied revealed that the preparation of the soil, following the three years proposed by the methodology, was important for the success in establishing the rehabilitation process. Some of the areas analyzed already show some parameters with values close or superior to those found in the capoeira (secondary forest), the latter being the non-treated area. © 2010 WIT Press.
Resumo:
According to the environmental legislation enforced in Brazil and the process of marketing globalization, the commitment of the nations to the preservation of the environment is intensified. By reason of nature's negative responses to its intensive use, awareness then appears from enterprises and agencies about how the anthropic action over the environment needs to be minimized, becoming a challenge: development and sustainability. In this context, the present work made use of the Mechanical tillage of the soil, as a technique to apply, in a large scale, the strategies and methods to recover mined areas that were researched and developed experimentally by researchers on a theme project about the recovering of degraded areas. This work was conducted in the Amazon ecosystem, inside the Jamari National Forest - Rondônia (FLONA do Jamari), in deactivated cassiterite mines. The objectives of this work were to: Develop a computational program capable of managing a database and assist in the selection of machines and preparation methods to execute the operations of topographical reconstitution and tillage of surfaces in areas degraded by the mineral exploitation of cassiterite. Use the program that was developed in the planning of costs and operational development, for the operations required in the strategies for recovering the areas. Analyze the vegetable productivity in the mobilized areas and the quality of the superficial mobilization, making use of indicators and tillage methods. Evaluate, through biological indicators, the efficiency of the recovery strategies and techniques that were mechanized and applied on the location. The results showed that the developed computational program (SGMAD) served the methodological purposes (the analysis of costs and operational capacity) established for the planning and the selection of the tillage machines and methods in the areas of mineral exploitation of cassiterite. The applied methods and quality of the superficial mobilization were significant to the development of leguminous plants in the areas. The use of biological indicators (microbial biomass and enzymatic activity) in the evaluation of the adopted techniques and strategies revealed that the planting of leguminous plants and their posterior incorporation have been promoting gradually positive alterations in some of the analyzed soil/substract parameters. © 2010 WIT Press.