849 resultados para FAT-luokka
Resumo:
Introduction: Pulmonary fat embolism (PFE) can be a cause of death in cases with trauma, during orthopedic surgery and also in non-traumatic conditions, such as burns, pancreatitis, fatty liver or sickle cell disease. As PMA becomes more widespread, it is important to determine how it affects the diagnosis of PFE. Aims: The aim of this study was to determine if the oily contrast liquid used in PMA induces artefactual PFE, if such artefacts differ from original PFE and if PFE can be detected and graded before PMA. Material and methods: Cases of adults without signs of postmortem change and for which an autopsy with angiography was performed were selected for this study. Pulmonary biopsies of each lung were taken before and after the angiography as were fragments of each lung with a twin-edged knife during the autopsy. The samples were examined under the microscope without fixation or staining and after an Oil-Red O staining. PFE was graded according to Falci et al. Results: Non-artefactual (original) PFE was diagnosed in 4 cases on pre-PMA biopsies. As expected, structures with the aspect of PFE were present in all cases after angiography. The microscopical aspect of original and PMA induced PFE was identical. Grading of the PFE according to Falci et al. was depending on the quality of the biopsies. Conclusions: PMA with oily contrast induces artefactual PFE that cannot be visually differentiated from original PFE. Original PFE can however be diagnosed with pre-angiography biopsies. In order to assure the diagnosis and correct grading of PFE, the quality of the biopsy should be checked before PMA with oily contrast.
Resumo:
The fatty acids from cocoa butters of different origins, varieties, and suppliers and a number of cocoa butter equivalents (Illexao 30-61, Illexao 30-71, Illexao 30-96, Choclin, Coberine, Chocosine-Illipe, Chocosine-Shea, Shokao, Akomax, Akonord, and Ertina) were investigated by bulk stable carbon isotope analysis and compound specific isotope analysis. The interpretation is based on principal component analysis combining the fatty acid concentrations and the bulk and molecular isotopic data. The scatterplot of the two first principal components allowed detection of the addition of vegetable fats to cocoa butters. Enrichment in heavy carbon isotope (C-13) of the bulk cocoa butter and of the individual fatty acids is related to mixing with other vegetable fats and possibly to thermally or oxidatively induced degradation during processing (e.g., drying and roasting of the cocoa beans or deodorization of the pressed fat) or storage. The feasibility of the analytical approach for authenticity assessment is discussed.
Resumo:
Langue roumaine
Resumo:
Toiminnallinen opinnäytetyömme on osa Koululaisen terveys ja toimintakyky -hanketta, jonka taustalla ovat Helsingin ammattikorkeakoulu, Helsingin opetusvirasto ja Helsingin terveyskeskus. Opinnäytetyömme tavoitteena oli seitsemäsluokkalaisten itsetuntoa ja luokan ryhmähenkeä tukevan toiminnan suunnittelu, toteutus ja raportointi. Ammatillisen kasvumme tavoitteena oli erilaisten toimintamenetelmien omaksuminen, itsetuntoon ja ryhmäytymiseen liittyvän erityistiedon kartuttaminen sekä ryhmäohjaustaitojen lisääminen. Teoriapohjana käytimme muun muassa hoito- ja käyttäytymistieteellisiä tutkimuksia itsetunnosta, mielialasta, ryhmäytymisestä ja kuulluksi tulemisesta. Toteutimme opinnäytetyömme Laajasalon koulun erään seitsemännen luokan kanssa 2. ja 3. marraskuuta 2005. Käytettävissämme oli yhteensä kuusi tuntia. Toimintaan osallistui 15 oppilasta. Tarkoituksenamme oli, että oppilaat harjoittelevat antamaan ja vastaanottamaan toisiltaan positiivista palautetta, osallistuvat hulluttelu-, lämmittely-, tutustumis-, luottamus-, myönteisyys-, ja yhteistyöharjoitteisiin, pohtivat itsetunto- ja mieliala-aiheisia kysymyksiä sekä tekevät yhdessä ryhmäänsä kuvaavan taideteoksen. Arvioimme opinnäytetyömme onnistumista havainnoimalla toteutustilanteita ja oppilaiden antaman kirjallisen palautteen perusteella. Arviointikohteina olivat oppilaiden osallistuminen ja tyytyväisyys toimintaan sekä omat ohjaustaitomme. Kaikki oppilaat osallistuvat lähes jokaiseen toiminnan osioon. Liikunnallisten harjoitteiden aikana oli levotonta, mikä saattoi johtua avarasta tilasta, halusta testata ohjaajien auktoriteettiä ja ikäkauteen liittyvästä psyykkisestä murroksesta. Taideteoksen tekemiseen oppilaat malttoivat syventyä ja siitä he myös pitivät eniten. Kaikki käyttämämme ryhmäyttävät harjoitteet eivät mielestämme soveltuneet ryhmätilanteeseen, jossa ohjaaja on vieras. Koemme edelleen, että aiheemme on tärkeä ja toivomme Laajasalon koulun ottavan käyttöön suunnittelemamme itsetunto- ja mieliala-aiheisen kirjoitustehtävän. Aiomme esitellä aihetta myös posterin avulla. Avainsanat itsetunto, murrosikä, ryhmäytyminen, toiminnallisuus
Resumo:
PURPOSE: To improve fat saturation in coronary MRA at 3T by using a spectrally selective adiabatic T2 -Prep (WSA-T2 -Prep). METHODS: A conventional adiabatic T2 -Prep (CA-T2 -Prep) was modified, such that the excitation and restoration pulses were of differing bandwidths. On-resonance spins are T2 -Prepared, whereas off-resonance spins, such as fat, are spoiled. This approach was combined with a CHEmically Selective Saturation (CHESS) pulse to achieve even greater fat suppression. Numerical simulations were followed by phantom validation and in vivo coronary MRA. RESULTS: Numerical simulations demonstrated that augmenting a CHESS pulse with a WSA-T2 -Prep improved robustness to B1 inhomogeneities and that this combined fat suppression was effective over a broader spectral range than that of a CHESS pulse in a conventional T2 -Prepared sequence. Phantom studies also demonstrated that the WSA-T2 -Prep+CHESS combination produced greater fat suppression across a range of B1 values than did a CA-T2 -Prep+CHESS combination. Lastly, in vivo measurements demonstrated that the contrast-to-noise ratio between blood and myocardium was not adversely affected by using a WSA-T2 -Prep, despite the improved abdominal and epicardial fat suppression. Additionally, vessel sharpness improved. CONCLUSION: The proposed WSA-T2 -Prep method was shown to improve fat suppression and vessel sharpness as compared to a CA-T2 -Prep technique, and to also increase fat suppression when combined with a CHESS pulse.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
Nitric oxide (NO) plays a major role in the regulation of cardiovascular and metabolic homeostasis, as evidenced by insulin resistance and arterial hypertension in endothelial NO synthase (eNOS) null mice. Extrapolation of these findings to humans is difficult, however, because eNOS gene deficiency has not been reported. eNOS gene polymorphism and impaired NO synthesis, however, have been reported in several cardiovascular disease states and could predispose to insulin resistance. High-fat diet induces insulin resistance and arterial hypertension in normal mice. To test whether partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension during metabolic stress, we examined effects of an 8-week high-fat diet on insulin sensitivity (euglycemic clamp) and arterial pressure in eNOS(+/-) mice. When fed a normal diet, these mice had normal insulin sensitivity and were normotensive. When fed a high-fat diet, however, eNOS(+/-) mice developed exaggerated arterial hypertension and had fasting hyperinsulinemia and a 35% lower insulin-stimulated glucose utilization than control mice. The partial deletion of the eNOS gene does not alter insulin sensitivity or blood pressure in mice. When challenged with nutritional stress, however, partial eNOS deficiency facilitates the development of insulin resistance and arterial hypertension, providing further evidence for the importance of this gene in linking metabolic and cardiovascular disease.
Resumo:
This corrects the article on p. e73445 in vol. 8.]. This corrects the article "Topographical Body Fat Distribution Links to Amino Acid and Lipid Metabolism in Healthy Non-Obese Women" , e73445. There was an error in the title of the article. The correct version of the title in the article is: Topographical Body Fat Distribution Links to Amino Acid and Lipid Metabolism in Healthy Obese Women The correct citation is: Martin F-PJ, Montoliu I, Collino S, Scherer M, Guy P, et al. (2013) Topographical Body Fat Distribution Links to Amino Acid and Lipid Metabolism in Healthy Obese Women. PLoS ONE 8(9): e73445. doi:10.1371/journal.pone.0073445
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.
Resumo:
Fat balance plays an important role in fat mass regulation. The mechanisms by which fat intake and fat oxidation are controlled are poorly understood. In particular, no data are available on the origin, i.e. exogenous (meal intake) or endogenous (adipose tissue lipolysis), of fat oxidized during the postprandial period in children and the proportion between these two components. In this study we tested the hypothesis that there is a relationship between adiposity and the oxidative fate of fat taken with a mixed meal in a group of 15 children with a wide range of fat mass (9-64%). The combination of stable isotope analysis ([13C] enriched fatty acids added to a mixed meal) and indirect calorimetry allowed us to differentiate between the exogenous and endogenous resting fat oxidation rate over the 9-h postprandial period. During the 9 hours of the postprandial period, the children oxidized an amount of fat comparable to that ingested with the meal [26.8 (+/-2.31) g vs. 26.4 (+/-2.3) g, respectively, P = ns]. On average, exogenous fat oxidation [2.99 (+/-3.0) g/9 h] represented 10.8% (+/-0.9) of total fat oxidation. Endogenous fat oxidation, calculated as the difference between total fat oxidation and exogenous fat oxidation, averaged 23.4 (+/-1.9) g/9 h and represented 88.2% (+/-0.9) of total fat oxidation. Endogenous fat oxidation as well as exogenous fat oxidation were highly correlated to total fat oxidation (r = 0.83, P < 0.001; r = 0.84, P < 0.001, respectively). Exogenous fat oxidation expressed as a proportion of total fat oxidation was directly related to fat mass (r = 0.56, P < 0.03), while endogenous fat oxidation expressed as a proportion of total fat oxidation was inversely related (r = -0.57, P < 0.03) to the degree of adiposity. The enhanced exogenous fat oxidation observed when adiposity increases in the dynamic phase of obesity may be viewed as a protective mechanism to prevent further increase in fat mass and hence to maintain fat oxidation at a sufficient rate when the body is exposed to a high amount of dietary fat, as typically encountered in obese children.
Resumo:
Choosing what to eat is a complex activity for humans. Determining a food's pleasantness requires us to combine information about what is available at a given time with knowledge of the food's palatability, texture, fat content, and other nutritional information. It has been suggested that humans may have an implicit knowledge of a food's fat content based on its appearance; Toepel et al. (Neuroimage 44:967-974, 2009) reported visual-evoked potential modulations after participants viewed images of high-energy, high-fat food (HF), as compared to viewing low-fat food (LF). In the present study, we investigated whether there are any immediate behavioural consequences of these modulations for human performance. HF, LF, or non-food (NF) images were used to exogenously direct participants' attention to either the left or the right. Next, participants made speeded elevation discrimination responses (up vs. down) to visual targets presented either above or below the midline (and at one of three stimulus onset asynchronies: 150, 300, or 450 ms). Participants responded significantly more rapidly following the presentation of a HF image than following the presentation of either LF or NF images, despite the fact that the identity of the images was entirely task-irrelevant. Similar results were found when comparing response speeds following images of high-carbohydrate (HC) food items to low-carbohydrate (LC) food items. These results support the view that people rapidly process (i.e. within a few hundred milliseconds) the fat/carbohydrate/energy value or, perhaps more generally, the pleasantness of food. Potentially as a result of HF/HC food items being more pleasant and thus having a higher incentive value, it seems as though seeing these foods results in a response readiness, or an overall alerting effect, in the human brain.
Resumo:
In Crohn's disease bacteria could be detected in the adjacent mesenteric fat characterized by hypertrophy of unknown function. This study aimed to define effector responses of this compartment induced by bacterial translocation during intestinal inflammation. Dextran sulfate sodium-induced colitis served as a model of intestinal inflammation. Translocation of peptides and bacteria into mesenteric fat was evaluated. Innate functions of mesenteric fat and epithelium were characterized at whole tissue, cellular, and effector molecule levels. Orally applied peptides translocated in healthy wild-type (WT) mice. Bacterial translocation was not detected in healthy and acute but increased in chronic colitis. Mesenteric fat from colitic mice released elevated levels of cytokines and was infiltrated by immune cells. In MyD88(-/-) mice bacterial translocation occurred in health and increased in colitis. The exaggerated cytokine production in mesenteric fat accompanying colonic inflammation in WT mice was less distinct in MyD88(-/-) mice. In vitro studies revealed that fat not only increases cytokine production following contact with bacterial products, but also that preadipocytes are potent phagocytes. Colonic inflammation is accompanied by massive cytokine production and immune cell infiltration in adjacent adipose tissue. These effects can be considered as protective mechanisms of the mesenteric fat in the defense of bacterial translocation.