869 resultados para Extraterrestrial environments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minor phases in meteorites are important indicators of parent-body processing conditions. For example, Kerridge and others (1, 2) have shown that the presence of sulphates and carbonates in CI chondrites provides evidence for aqueous alteration on the parent body. Carbonates and sulphates are relatively prominent components of CI chondrites (e.g., -11.6 wt.% of total mass' and> 10 um diameter) compared to minor phases in most other classes of meteorite and thus, have been amenable to macro scale characterisation using optical petrography and electron microprobe analysis. These minor phases account for significant accumulations of low abundance elements, such as Na, S, K, Ca, and Ni within the bulk meteorite. The fine grained matrix, which consists mostly oflizardite- and montmorillonite-like clays (3), is the...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a study aimed at better understanding how students adapt to new blended studio learning environments, all undergraduate and masters of architecture students at a large school of architecture in Australia, learned a semester of architectural design in newly renovated, technology embedded, design studio environments. The renovations addressed the lessons learned from a 2011 pilot study of a second year architectural design studio learned in a high technology embedded prototype digital laboratory. The new design studios were purpose designed for the architecture students and adapted Student-Centred Active Learning Environment for Undergraduate Programs design principles. At the end of the semester, the students completed a questionnaire about their experiences of learning in the new design studio environments. Using a dual method qualitative approach, the questionnaire data were coded and extrapolated using both thematic analysis and grounded theory methodology. The results from these two approaches were compared, contrasted and finally merged, to reveal five distinct emerging themes, which were instrumental in offering resistance or influencing adaptation to, the new blended studio learning environments. This paper reports on the study, discusses the major contributors to resistance and adaptation, and proposes points for consideration when renovating or designing new blended studio learning environments. This research extends the 2011 pilot study by the same authors: ‘Dichotomy in the design studio: Adapting to new blended learning environments’.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Governments face a significant challenge to ensure that community environments meet the mobility needs of an ageing population. Therefore, it is critical to investigate the effect of suburban environments on the choice of transportation and its relation to participation and active ageing. Objective. This research explores if and how suburban environments impact older people’s mobility and their use of different modes of transport. Methods. Data derived from GPS tracking, travel diaries, brief questionnaires, and semistructured interviews were gathered from thirteen people aged from 56 to 87 years, living in low-density suburban environments in Brisbane, Australia. Results. The suburban environment influenced the choice of transportation and out-of-home mobility. Both walkability and public transportation (access and usability) impact older people’s transportation choices. Impracticality of active and public transportation within suburban environments creates car dependency in older age. Conclusion. Suburban environments often create barriers to mobility, which impedes older people’s engagement in their wider community and ability to actively age in place. Further research is needed to develop approaches towards age-friendly suburban environments which will encourage older people to remain active and engaged in older age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chondritic porous aggregates (CPA's) belong to an important subset of small particles (usually between 5 and 50 micrometers) collected from the stratosphere by high flying aircraft. These aggregates are approximately chondritic in elemental abundance and are composed of many thousands of small­er, submicrometer particles. CPA particles have been the subject of intensive study during the past few years [1-3] and there is strong evidence that they are a new class of extraterrestrial material not represented in the meteorite collection [3,4]. However, CPA's may be related to carbonaceous chondrites and in fact, both may be part of a continuum of primitive extraterrestrial materials [5]. The importance of CPA's stems from suggestions that they are very primitive solar system material possibly derived from early formed proto­ planets, chondritic parent bodies, or comets [3, 6]. To better understand the origin and evolution of these particles, we have attempted to summarize all of the mineralogical data on identified CPA's published since about 1976.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethnography is now a well-established research methodology for virtual environments, and the vast majority of accounts have one aspect in common, whether textual or graphic environments – that of the embodied avatar. In this article, I first discuss the applicability of such a methodology to non-avatar environments such as Eve Online, considering where the methodology works and the issues that arise in its implementation – particularly for the consideration of sub-communities within the virtual environment. Second, I consider what alternative means exist for getting at the information that is obtained through an ethnographic study of the virtual environment. To that end, I consider the practical and ethical implications of utilizing existing accounts, the importance of the meta-game discourse, including those sources outside of the control of the environment developer, and finally the utility in combining personal observations with accounts of other ethnographers, both within and between environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the architectural design studio learning environment was first established in the early 19th century at the École des Beaux-Arts in Paris, there has been a complete transformation in how the discipline of architecture is practiced and how students of architecture acquire information. Digital technologies allow students to access information instantly and learning is no longer confined to the rigid boundaries of a physical campus environment. In many schools of architecture in Australia, the physical design studio learning environments however, remain largely unchanged. Many learning environments could be mistaken for those last refurbished 30 years ago, being devoid of any significant technological intervention. While some teaching staff are eagerly embracing new digital technologies and attempting to modify their pedagogical approaches, the physical design studio learning environment is resistant to such efforts. In a study aimed at better understanding how staff and students adapt to new blended learning environments, a group of 165 second year architecture students at a large school of architecture in Australia were separated into two different design studio learning environments. 70% of students were allocated to a traditional design studio setting and 30% to a new, high technology embedded, prototype digital learning laboratory. The digital learning laboratory was purpose designed for the case-study users, adapted Student-Centred Active Learning Environment for Undergraduate Programs [SCALE-UP] principles, and built as part of a larger university research project. The architecture students attended the same lectures, followed the same studio curriculum and completed the same pieces of assessment; the only major differences were the teaching staff and physical environment within which the studios were conducted. At the end of the semester, all staff and students were asked to complete a questionnaire about their experiences and preferences within the two respective learning environments. The questionnaire response rate represented the opinions of 100% of the 10 teaching staff and over 70% of the students. Using a qualitative grounded theory approach, data were coded, extrapolated and compared, to reveal emerging key themes. The key themes formed the basis for in-depth interviews and focus groups of teaching staff and students, allowing the researchers to understand the data in more detail. The results of the data verified what had become increasingly evident during the course of the semester: an underlying negative resistance to the new digital studio learning environment, by both staff and students. Many participants openly exhibited a yearning for a return to the traditional design studio learning environments, particularly when the new technology caused frustration, by being unreliable or failing altogether. This paper reports on the study, discusses the negative resistance and explores the major contributors to resistance. The researchers are not aware of any similar previous studies across these particular settings and believe that it offers a necessary and important contribution to emergent research about adaptation to new digital learning environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper summarises the achievements of the Smart Skies Project, a three-year, multi-award winning international project that researched, developed and extensively flight tested four enabling aviation technologies: an electrooptical mid-air collision avoidance system, a static obstacle avoidance system, a mobile ground-based air traffic surveillance system, and a global automated airspace separation management system. The project included the development of manned and unmanned flight test aircraft, which were used to characterise the performance of the prototype systems for a range of realistic scenarios under a variety of environmental conditions. In addition to the collection of invaluable flight data, the project achieved world-firsts in the demonstration of future automated collision avoidance and separation management concepts. This paper summarises these outcomes, the overall objectives of the project, the research and the development of the prototype systems, the engineering of the flight test systems, and the results obtained from flight-testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platey grains of cubic Bi2O3, α-Bi2O3, and Bi2O2.75 nanograins were associated with chondritic porous interplanetary dust particles W7029C1, W7029E5, and 2011C2 that were collected in the stratosphere at 17-19 km altitude. Similar Bi oxide nanograins were present in the upper stratosphere during May 1985. These grains are linked to the plumes of several major volcanic eruptions during the early 1980s that injected material into the stratosphere. The mass of sulfur from these eruptions is a proxy for the mass of stratospheric Bi from which we derive the particle number densities (p m -3) for "average Bi2O3 nanograins" due to this volcanic activity and those necessary to contaminate the extraterrestrial chondritic porous interplanetary dust particles via collisional sticking. The match between both values supports the idea that Bi2O3 nanograins of volcanic origin could contaminate interplanetary dust particles in the Earth's stratosphere. Copyright 1997 by the American Geophysical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed analytical electron microscope analyses of four fine-grained chondritic porous interplanetary dust particles (IDPs)reveal the presence of titanium oxide Magneli phases, TinO2n-1 (n=4,5,6), and rare Ti-metal. The titanium minerals are indigenous to these chondritic IDPs. The association of Magneli phases, Ti-metal, and carbonaceous material in chondritic IDPs, along with the grain size distributions support in situ solid carbon gasification in these extraterrestrial particles. The active catalyst in this process is titanium metal that we infer may be of interstellar origin. This favorable catalysis uniquely leads to the formation of Magneli phases. As chondritic IDPs may be solid debris of short-period comets, our data indicate that nuclei of short-period comets may show distinctive chemical reactions that lead to Ti-mineral assemblages that typically include Magneli phases. The proposed model provides a plausible mechnism to explain the higher solid carbon content of chondritic IDPs relative to bulk carbon abundances typical for carbonaceous chondrite matrices that represent another type of more evolved, that is, metamorphosed, undifferentiated solar system bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of carbonaceous matter in primitive extraterrestrial materials is an essential component of studies on dust evolution in the interstellar medium and the early history of the Solar System. We have suggested previously that a record of graphitization is preserved in chondritic porous (CP) aggregates and carbonaceous chondrites1,2 and that the detailed mineralogy of CP aggregates can place boundary conditions on the nature of both physical and chemical processes which occurred at the time of their formation2,3. Here, we report further analytical electron microscope (AEM) studies on carbonaceous material in two CP aggregates which suggest that a record of hydrocarbon carbonization may also be preserved in these materials. This suggestion is, based upon the presence of well-ordered carbon-2H (lonsdaleite) in CP aggregates W7029*A and W7010*A2. This carbon is a metastable phase resulting from hydrous pyrolysis below 300-350°C and may be a precursor to poorly graphitized carbons (PGCs) in primitive extraterrestrial materials2. © 1987 Nature Publishing Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first representative chemical, structural, and morphological analysis of the solid particles from a single collection surface has been performed. This collection surface sampled the stratosphere between 17 and 19km in altitude in the summer of 1981, and therefore before the 1982 eruptions of El Chichón. A particle collection surface was washed free of all particles with rinses of Freon and hexane, and the resulting wash was directed through a series of vertically stacked Nucleopore filters. The size cutoff for the solid particle collection process in the stratosphere is found to be considerably less than 1 μm. The total stratospheric number density of solid particles larger than 1μm in diameter at the collection time is calculated to be about 2.7×10−1 particles per cubic meter, of which approximately 95% are smaller than 5μm in diameter. Previous classification schemes are expanded to explicitly recognize low atomic number material. With the single exception of the calcium-aluminum-silicate (CAS) spheres all solid particle types show a logarithmic increase in number concentration with decreasing diameter. The aluminum-rich particles are unique in showing bimodal size distributions. In addition, spheres constitute only a minor fraction of the aluminum-rich material. About 2/3 of the particles examined were found to be shards of rhyolitic glass. This abundant volcanic material could not be correlated with any eruption plume known to have vented directly to the stratosphere. The micrometeorite number density calculated from this data set is 5×10−2 micrometeorites per cubic meter of air, an order of magnitude greater than the best previous estimate. At the collection altitude, the maximum collision frequency of solid particles >5μm in average diameter is calculated to be 6.91×10−16 collisions per second, which indicates negligible contamination of extraterrestrial particles in the stratosphere by solid anthropogenic particles.