964 resultados para Extracellular Matrix Accumulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of T cells by antigens or mitogens leads to the secretion of cytokines and enzymes that shape the inflammatory response. Among these molecular mediators of inflammation is a heparanase enzyme that degrades the heparan sulfate scaffold of the extracellular matrix (ECM). Activated T cells use heparanase to penetrate the ECM and gain access to the tissues. We now report that among the breakdown products of the ECM generated by heparanase is a trisulfated disaccharide that can inhibit delayed-type hypersensitivity (DTH) in mice. This inhibition of T-cell mediated inflammation in vivo was associated with an inhibitory effect of the disaccharide on the production of biologically active tumor necrosis factor alpha (TNF-alpha) by activated T cells in vitro; the trisulfated disaccharide did not affect T-cell viability or responsiveness generally. Both the in vivo and in vitro effects of the disaccharide manifested a bell-shaped dose-response curve. The inhibitory effects of the trisulfated disaccharide were lost if the sulfate groups were removed. Thus, the disaccharide, which may be a natural product of inflammation, can regulate the functional nature of the response by the T cell to activation. Such a feedback control mechanism could enable the T cell to assess the extent of tissue degradation and adjust its behavior accordingly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During puberty, pregnancy, lactation and postlactation, breast tissue undergoes extensive remodelling and the disruption of these events can lead to cancer. In vitro studies of mammary tissue and its malignant transformation regularly employ mammary epithelial cells cultivated on matrigel or floating collagen rafts. In these cultures, mammary epithelial cells assemble into three-dimensional structures resembling in vivo acini. We present a novel technique for generating functional mammary constructs without the use of matrix substitutes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using immunohistochemistry and RNA analyses we examined the fate of components of a newly identified matrix that develops between granulosa cells (focimatrix, abbreviated from focal intraepithelial matrix) and of the follicular basal lamina in ovulating bovine ovarian follicles. Pre- and postovulatory follicles were generated by treatment with estradiol (Day 1), progesterone (Days 1-10), and prostaglandin analogue (Day 9) with either no further treatment (Group 1, n = 6) and or with 25 mg porcine LH (Day 11, Group 2, n = 8 or Day 10, Group 3, n = 8) and ovariectomy on Day 12 (12-14 hr post LH in Group 2, 38-40.5 hr in Group 3). In the time frame examined no loss of follicular basal lamina laminin chains beta 2 and gamma 1 or nidogen 1 was observed. In the follicular basal lamina collagen type IV alpha 1 and perlecan were present prior to ovulation; after ovulation collagen type IV alpha 1 was discontinuously distributed and perlecan was absent. Versican in the theca interna adjacent to the follicular basal lamina in preovulatory follicles was not observed post ovulation, however, the granulosa cells then showed strong cytoplasmic staining for versican. Expression of versican isoforms V0, V1, and V3 was detected at all stages. Focimatrix was observed in preovulatory follicles. It contained collagen type IV alpha 1, laminins beta 2 and gamma 1, nidogen 1 and perlecan and underwent changes in composition similar to that of the follicular basal lamina. In conclusion focimatrix and the follicular basal lamina are degraded at ovulation. Individual components are lost at different times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular fragments of cartilage are antigenic and can stimulate an autoimmune response. Oral administration of type II collagen prevents disease onset in animal models of arthritis but the effects of other matrix components have not been reported. We evaluated glycosaminoglycan polypeptides (GAG-P) and matrix proteins (CaP) from cartilage for a) mitigating disease activity in rats with collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) and b) stimulating proteoglycan (PG) synthesis by chondrocytes in-vitro. CIA and AIA were established in Wistar rats using standard methods. Agents were administered orally (10–200 mg/kg), either for seven days prior to disease induction (toleragenic protocol), or continuously for 15 days after injecting the arthritigen (prophylactic protocol). Joint swelling and arthritis scores were determined on day 15. Histological sections of joint tissues were assessed post-necropsy. In chondrocyte cultures, CaP + / − interleukin-1 stimulated PG biosynthesis. CaP was also active in preventing arthritis onset at 3.3, 10 or 20 mg/kg in the rat CIA model using the toleragenic protocol. It was only active at 20 and 200 mg/kg in the CIA prophylactic protocol. GAG-P was active in the CIA toleragenic protocol at 20 mg/kg but chondroitin sulfate and glucosamine hydrochloride or glucosamine sulfate were all inactive. The efficacy of CaP in the rat AIA model was less than in the CIA model. These findings lead us to suggest that oral CaP could be used as a disease-modifying anti-arthritic drug.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary vesicoureteral reflux (VUR) is a common pediatric condition due to a developmental defect in the ureterovesical junction. The prevalence of VUR among individuals with connective tissue disorders, as well as the importance of the ureter and bladder wall musculature for the anti-reflux mechanism, suggest that defects in the extracellular matrix (ECM) within the ureterovesical junction may result in VUR. This review will discuss the function of the smooth muscle and its supporting ECM microenvironment with respect to VUR, and explore the association of VUR with mutations in ECM-related genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the extracellular matrix (ECM) and mechanotransduction as an important signaling factor in the human uterus is just beginning to be appreciated. The ECM is not only the substance that surrounds cells, but ECM stiffness will either compress cells or stretch them resulting in signals converted into chemical changes within the cell, depending on the amount of collagen, cross-linking, and hydration, as well as other ECM components. In this review we present evidence that the stiffness of fibroid tissue has a direct effect on the growth of the tumor through the induction of fibrosis. Fibrosis has two characteristics: (1) resistance to apoptosis leading to the persistence of cells and (2) secretion of collagen and other components of the ECM such a proteoglycans by those cells leading to abundant disposition of highly cross-linked, disoriented, and often widely dispersed collagen fibrils. Fibrosis affects cell growth by mechanotransduction, the dynamic signaling system whereby mechanical forces initiate chemical signaling in cells. Data indicate that the structurally disordered and abnormally formed ECM of uterine fibroids contributes to fibroid formation and growth. An appreciation of the critical role of ECM stiffness to fibroid growth may lead to new strategies for treatment of this common disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the impact of extracellular matrix sub-types and mechanical stretch on cardiac fibroblast activity is required to help unravel the pathophysiology of myocardial fibrotic diseases. Therefore, the purpose of this study was to investigate pro-fibrotic responses of primary human cardiac fibroblast cells exposed to different extracellular matrix components, including collagen sub-types I, III, IV, VI and laminin. The impact of mechanical cyclical stretch and treatment with transforming growth factor beta 1 (TGFβ1) on collagen 1, collagen 3 and alpha smooth muscle actin mRNA expression on different matrices was assessed using quantitative real-time PCR. Our results revealed that all of the matrices studied not only affected the expression of pro-fibrotic genes in primary human cardiac fibroblast cells at rest but also affected their response to TGFβ1. In addition, differential cellular responses to mechanical cyclical stretch were observed depending on the type of matrix the cells were adhered to. These findings may give insight into the impact of selective pathological deposition of extracellular matrix proteins within different disease states and how these could impact the fibrotic environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In asymptomatic subjects B-type natriuretic peptide (BNP) is associated with adverse cardiovascular outcomes even at levels well below contemporary thresholds used for the diagnosis of heart failure. The mechanisms behind these observations are unclear. We examined the hypothesis that in an asymptomatic hypertensive population BNP would be associated with sub-clinical evidence of cardiac remodeling, inflammation and extracellular matrix (ECM) alterations. We performed transthoracic echocardiography and sampled coronary sinus (CS) and peripheral serum from patients with low (n = 14) and high BNP (n = 27). Peripheral BNP was closely associated with CS levels (r = 0.92, p<0.001). CS BNP correlated significantly with CS levels of markers of collagen type I and III turnover including: PINP (r = 0.44, p = 0.008), CITP (r = 0.35, p = 0.03) and PIIINP (r = 0.35, p = 0.001), and with CS levels of inflammatory cytokines including: TNF-α (r = 0.49, p = 0.002), IL-6 (r = 0.35, p = 0.04), and IL-8 (r = 0.54, p<0.001). The high BNP group had greater CS expression of fibro-inflammatory biomarkers including: CITP (3.8±0.7 versus 5.1±1.9, p = 0.007), TNF-α (3.2±0.5 versus 3.7±1.1, p = 003), IL-6 (1.9±1.3 versus 3.4±2.7, p = 0.02) and hsCRP (1.2±1.1 versus 2.4±1.1, p = 0.04), and greater left ventricular mass index (97±20 versus 118±26 g/m(2), p = 0.03) and left atrial volume index (18±2 versus 21±4, p = 0.008). Our data provide insight into the mechanisms behind the observed negative prognostic impact of modest elevations in BNP and suggest that in an asymptomatic hypertensive cohort a peripheral BNP measurement may be a useful marker of an early, sub-clinical pathological process characterized by cardiac remodeling, inflammation and ECM alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal pigment epithelium cells, along with tight junction (TJ) proteins, constitute the outer blood retinal barrier (BRB). Contradictory findings suggest a role for the outer BRB in the pathogenesis of diabetic retinopathy (DR). The aim of this study was to investigate whether the mechanisms involved in these alterations are sensitive to nitrosative stress, and if cocoa or epicatechin (EC) protects from this damage under diabetic (DM) milieu conditions. Cells of a human RPE line (ARPE-19) were exposed to high-glucose (HG) conditions for 24 hours in the presence or absence of cocoa powder containing 0.5% or 60.5% polyphenol (low-polyphenol cocoa [LPC] and high-polyphenol cocoa [HPC], respectively). Exposure to HG decreased claudin-1 and occludin TJ expressions and increased extracellular matrix accumulation (ECM), whereas levels of TNF-α and inducible nitric oxide synthase (iNOS) were upregulated, accompanied by increased nitric oxide levels. This nitrosative stress resulted in S-nitrosylation of caveolin-1 (CAV-1), which in turn increased CAV-1 traffic and its interactions with claudin-1 and occludin. This cascade was inhibited by treatment with HPC or EC through δ-opioid receptor (DOR) binding and stimulation, thereby decreasing TNF-α-induced iNOS upregulation and CAV-1 endocytosis. The TJ functions were restored, leading to prevention of paracellular permeability, restoration of resistance of the ARPE-19 monolayer, and decreased ECM accumulation. The detrimental effects on TJs in ARPE-19 cells exposed to DM milieu occur through a CAV-1 S-nitrosylation-dependent endocytosis mechanism. High-polyphenol cocoa or EC exerts protective effects through DOR stimulation.