999 resultados para Expression of emotions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans infected with Bordetella pertussis, the whooping cough bacterium, show evidences of impaired host defenses. This pathogenic bacterium produces a unique adenylate cyclase toxin (ACT) which enters human phagocytes and catalyzes the unregulated formation of cAMP, hampering important bactericidal functions of these immune cells that eventually cause cell death by apoptosis and/or necrosis. Additionally, ACT permeabilizes cells through pore formation in the target cell membrane. Recently, we demonstrated that ACT is internalised into macrophages together with other membrane components, such as the integrin CD11b/CD18 (CR3), its receptor in these immune cells, and GM1. The goal of this study was to determine whether ACT uptake is restricted to receptor-bearing macrophages or on the contrary may also take place into cells devoid of receptor and gain more insights on the signalling involved. Here, we show that ACT is rapidly eliminated from the cell membrane of either CR3-positive as negative cells, though through different entry routes, which depends in part, on the target cell physiology and characteristics. ACT-induced Ca2+ influx and activation of non-receptor Tyr kinases into the target cell appear to be common master denominators in the different endocytic strategies activated by this toxin. Very importantly, we show that, upon incubation with ACT, target cells are capable of repairing the cell membrane, which suggests the mounting of an anti-toxin cell repair-response, very likely involving the toxin elimination from the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assembling a nervous system requires exquisite specificity in the construction of neuronal connectivity. One method by which such specificity is implemented is the presence of chemical cues within the tissues, differentiating one region from another, and the presence of receptors for those cues on the surface of neurons and their axons that are navigating within this cellular environment.

Connections from one part of the nervous system to another often take the form of a topographic mapping. One widely studied model system that involves such a mapping is the vertebrate retinotectal projection-the set of connections between the eye and the optic tectum of the midbrain, which is the primary visual center in non-mammals and is homologous to the superior colliculus in mammals. In this projection the two-dimensional surface of the retina is mapped smoothly onto the two-dimensional surface of the tectum, such that light from neighboring points in visual space excites neighboring cells in the brain. This mapping is implemented at least in part via differential chemical cues in different regions of the tectum.

The Eph family of receptor tyrosine kinases and their cell-surface ligands, the ephrins, have been implicated in a wide variety of processes, generally involving cellular movement in response to extracellular cues. In particular, they possess expression patterns-i.e., complementary gradients of receptor in retina and ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., repulsive guidance of axons and defective mapping in mutants, respectively-consistent with the long-sought retinotectal chemical mapping cues.

The tadpole of Xenopus laevis, the South African clawed frog, is advantageous for in vivo retinotectal studies because of its transparency and manipulability. However, neither the expression patterns nor the retinotectal roles of these proteins have been well characterized in this system. We report here comprehensive descriptions in swimming stage tadpoles of the messenger RNA expression patterns of eleven known Xenopus Eph and ephrin genes, including xephrin-A3, which is novel, and xEphB2, whose expression pattern has not previously been published in detail. We also report the results of in vivo protein injection perturbation studies on Xenopus retinotectal topography, which were negative, and of in vitro axonal guidance assays, which suggest a previously unrecognized attractive activity of ephrins at low concentrations on retinal ganglion cell axons. This raises the possibility that these axons find their correct targets in part by seeking out a preferred concentration of ligands appropriate to their individual receptor expression levels, rather than by being repelled to greater or lesser degrees by the ephrins but attracted by some as-yet-unknown cue(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recurring to the characteristic of Bessel function, we give the analytic expression or the Fresnel diffraction by a circular aperture, thus the diffractions on the propagation axis and along the boundary of the geometrical shadow are discussed conveniently. Since it is difficult to embody intuitively the physical meaning from this series expression of the Fresnel diffraction, after weighing the diffractions on the axis and along the boundary of the geometrical shadow, we propose a simple approximate expression of the circular diffraction, which is equivalent to the rigorous solution in the further propagation distance. It is important for the measurement of the parameter or the beam, such as the quantitative analysis of the relationship of the wave error and the divergence of the beam, In this paper, the relationship of the fluctuation of the transverse diffraction profile and the position of the axial point is discussed too. (c) 2005 Elsevier GrnbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autism and Alzheimer's disease (AD) are, respectively, neurodevelopmental and degenerative diseases with an increasing epidemiological burden. The AD-associated amyloid-beta precursor protein-alpha has been shown to be elevated in severe autism, leading to the 'anabolic hypothesis' of its etiology. Here we performed a focused microarray analysis of genes belonging to NOTCH and WNT signaling cascades, as well as genes related to AD and apoptosis pathways in cerebellar samples from autistic individuals, to provide further evidence for pathological relevance of these cascades for autism. By using the limma package from R and false discovery rate, we demonstrated that 31% (116 out of 374) of the genes belonging to these pathways displayed significant changes in expression (corrected P-values <0.05), with mitochondria- related genes being the most downregulated. We also found upregulation of GRIN1, the channel-forming subunit of NMDA glutamate receptors, and MAP3K1, known activator of the JNK and ERK pathways with anti-apoptotic effect. Expression of PSEN2 (presinilin 2) and APBB1 (or F65) were significantly lower when compared with control samples. Based on these results, we propose a model of NMDA glutamate receptor-mediated ERK activation of alpha-secretase activity and mitochondrial adaptation to apoptosis that may explain the early brain overgrowth and disruption of synaptic plasticity and connectome in autism. Finally, systems pharmacology analyses of the model that integrates all these genes together (NOWADA) highlighted magnesium (Mg2+) and rapamycin as most efficient drugs to target this network model in silico. Their potential therapeutic application, in the context of autism, is therefore discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Retinal ganglion cells (RGCs) are exposed to injury in a variety of optic nerve diseases including glaucoma. However, not all cells respond in the same way to damage and the capacity of individual RGCs to survive or regenerate is variable. In order to elucidate factors that may be important for RGC survival and regeneration we have focussed on the extracellular matrix (ECM) and RGC integrin expression. Our specific questions were: (1) Do adult RGCs express particular sets of integrins in vitro and in vivo? (2) Can the nature of the ECM influence the expression of different integrins? (3) Can the nature of the ECM affect the survival of the cells and the length or branching complexity of their neurites? Methods Primary RGC cultures from adult rat retina were placed on glass coverslips treated with different substrates: Poly-L-Lysine (PL), or PL plus laminin (L), collagen I (CI), collagen IV (CIV) or fibronectin (F). After 10 days in culture, we performed double immunostaining with an antibody against beta III-Tubulin to identify the RGCs, and antibodies against the integrin subunits: alpha V, alpha 1, alpha 3, alpha 5, beta 1 or beta 3. The number of adhering and surviving cells, the number and length of the neurites and the expression of the integrin subunits on the different substrates were analysed. Results PL and L were associated with the greatest survival of RGCs while CI provided the least favourable conditions. The type of substrate affected the number and length of neurites. L stimulated the longest growth. We found at least three different types of RGCs in terms of their capacity to regenerate and extend neurites. The different combinations of integrins expressed by the cells growing on different substrata suggest that RGCs expressed predominantly alpha 1 beta 1 or alpha 3 beta 1 on L, alpha 1 beta 1 on CI and CIV, and alpha 5 beta 3 on F. The activity of the integrins was demonstrated by the phosphorylation of focal adhesion kinase (FAK). Conclusions Adult rat RGCs can survive and grow in the presence of different ECM tested. Further studies should be done to elucidate the different molecular characteristics of the RGCs subtypes in order to understand the possible different sensitivity of different RGCs to damage in diseases like glaucoma in which not all RGCs die at the same time.