983 resultados para Experimental characterization
Resumo:
By spliced alignment of human DNA and transcript sequence data we constructed a data set of transcript-confirmed exons and introns from 2793 genes, 796 of which (28%) were seen to have multiple isoforms. We find that over one-third of human exons can translate in more than one frame, and that this is highly correlated with G+C content. Introns containing adenosine at donor site position +3 (A3), rather than guanosine (G3), are more common in low G+C regions, while the converse is true in high G+C regions. These two classes of introns are shown to have distinct lengths, consensus sequences and correlations among splice signals, leading to the hypothesis that A3 donor sites are associated with exon definition, and G3 donor sites with intron definition. Minor classes of introns, including GC-AG, U12-type GT-AG, weak, and putative AG-dependant introns are identified and characterized. Cassette exons are more prevalent in low G+C regions, while exon isoforms are more prevalent in high G+C regions. Cassette exon events outnumber other alternative events, while exon isoform events involve truncation twice as often as extension, and occur at acceptor sites twice as often as at donor sites. Alternative splicing is usually associated with weak splice signals, and in a majority of cases, preserves the coding frame. The reported characteristics of constitutive and alternative splice signals, and the hypotheses offered regarding alternative splicing and genome organization, have important implications for experimental research into RNA processing. The 'AltExtron' data sets are available at http://www.bit.uq.edu.au/altExtron/ and http://www.ebi.ac.uk/similar tothanaraj/altExtron/.
Resumo:
Abnormal left ventricular (LV) filling is common, but not universal, in hypertensive LV hypertrophy (LVH). We sought to elucidate the relative contributions of myocardial structural changes, loading and hypertrophy to LV dysfunction in 113 patients: 85 with hypertensive LVH and 28 controls without LVH and with normal filling. Patients with normal dobutamine stress echocardiography and no history of coronary artery disease were selected, in order to exclude a contribution from ischaemia or scar. Abnormal LV filling was identified in 65 LVH patients, based on Doppler measurement of transmitral filling and annular velocities. All patients underwent grey-scale and colour tissue Doppler imaging from three apical views, which were stored and analysed off line. Integrated backscatter (113) and strain rate imaging were used to detect changes in structure and function; average cyclic variation of 113, strain rate and peak systolic strain were calculated by averaging each segment. Calibrated 113 intensity, corrected for pericardial 113 intensity, was measured in the septum and posterior wall from the parasternal long-axis view. Patients with LVH differed significantly from controls with respect to all backscatter and strain parameters, irrespective of the presence or absence of abnormal LV filling. LVH patients with and without abnormal LV filling differed with regard to age, LV mass and incidence of diabetes mellitus, but also showed significant differences in cyclic variation (P < 0.01), calibrated 113 in the posterior wall (P < 0.05) and strain rate (P < 0.01), although blood pressure, heart rate and LV systolic function were similar. Multivariate logistic regression analysis demonstrated that age, LV mass index and calibrated IB in the posterior wall were independent determinants of abnormal LV filling in patients with LVH. Thus structural and functional abnormalities can be detected in hypertensive patients with LVH with and without abnormal LV filling. In addition to age and LVH, structural (not functional) abnormalities are likely to contribute to abnormal LV filling, and may be an early sign of LV damage. 113 is useful for the detection of myocardial abnormalities in patients with hypertensive LVH.
Resumo:
In this paper we apply a method recently developed by Do and co-workers(1) for the prediction of adsorption isotherms of pure vapors on carbonaceous materials. The information required for the prediction is the pore size distribution and the BET constant, C, of a corresponding nonporous surface (graphite). The dispersive adsorption force is assumed to be the dominant force in adsorption mechanism. This applies to nonpolar and weakly polar hydrocarbons. We test this predictive model against the adsorption data of benzene, toluene, n-pentane, n-hexane, and ethanol on a commercial activated carbon. It is found that the predictions are excellent for all adsorbates tested with the exception of ethanol where the predicted values are about 10% less than the experimental data, and this is probably attributed to the electrostatic interaction between ethanol molecules and the functional groups on the carbon surfaces.
Resumo:
The endocytosis of E-cadherin has recently emerged as an important determinant of cadherin function with the potential to participate in remodeling adhesive contacts. In this study we focused on the initial fate of E-cadherin when it predominantly exists free on the cell surface prior to adhesive binding or incorporation into junctions. Surface-labeling techniques were used to define the endocytic itinerary of E-cadherin in MCF-7 cells and in Chinese hamster ovary cells stably expressing human E-cadherin. We found that in this experimental system E-cadherin entered a transferrin-negative compartment before transport to the early endosomal compartment, where it merged with classical clathrin-mediated uptake pathways. E-cadherin endocytosis was inhibited by mutant dynamin, but not by an Eps15 mutant that effectively blocked transferrin internalization. Furthermore, sustained signaling by the ARF6 GTPase appeared to trap endocytosed E-cadherin in large peripheral structures. We conclude that in isolated cells unbound E-cadherin on the cell surface is predominantly endocytosed by a clathrin-independent pathway resembling macropinocytotic internalization, which then fuses with the early endosomal system. Taken with earlier reports, this suggests the possibility that multiple pathways exist for E-cadherin entry into cells that are likely to reflect cell context and regulation.
Resumo:
The effect of several desilication experimental parameters (base concentration, temperature and time) on the characteristics of MOR zeolite was studied. The samples were characterized by X-ray diffraction, Al-27 and Si-29 MAS-NMR, chemical analysis, and FTIR (framework vibration region). The textural characterization was made by N-2 adsorption and the acidity was evaluated by pyridine adsorption followed by FTIR and by the catalytic model reaction of n-heptane cracking. The alkaline treatments promoted the Si extraction from the zeolite framework, without considerable loss of crystallinity and, as it was envisaged, an important increase of the mesoporous structure was attained. A linear correlation between the number of framework Si per unit cell. N-Si and the asymmetric stretching wavenumber, nu(i), was observed. The acidity characterization shows that the desilicated samples exhibit practically the same acid properties than the parent HMOR zeolite. The optimum desilication conditions were those used to obtain sample M/0.2/85/2, i.e., sample treated with 0.2 M NaOH solution at 85 degrees C for 2 h.
Resumo:
With the constant development of new antibiotics, selective pressure is a force to reckon when investigating antibiotic resistance. Although advantageous for medical treatments, it leads to increasing resistance. It is essential to use more potent and toxic antibiotics. Enzymes capable of hydrolyzing antibiotics are among the most common ways of resistance and TEM variants have been detected in several resistant isolates. Due to the rapid evolution of these variants, complex phenotypes have emerged and the need to understand their biological activity becomes crucial. To investigate the biochemical properties of TEM-180 and TEM-201 several computational methodologies have been used, allowing the comprehension of their structure and catalytic activity, which translates into their biological phenotype. In this work we intent to characterize the interface between these proteins and the several antibiotics used as ligands. We performed explicit solvent molecular dynamics (MD) simulations of these complexes and studied a variety of structural and energetic features. The interfacial residues show a distinct behavior when in complex with different antibiotics. Nevertheless, it was possible to identify some common Hot Spots among several complexes – Lys73, Tyr105 and Glu166. The structural changes that occur during the Molecular Dynamic (MD) simulation lead to the conclusion that these variants have an inherent capacity of adapting to the various antibiotics. This capability might be the reason why they can hydrolyze antibiotics that have not been described until now to be degraded by TEM variants. The results obtained with computational and experimental methodologies for the complex with Imipenem have shown that in order to this type of enzymes be able to acylate the antibiotics, they need to be capable to protect the ligand from water molecules.
Resumo:
The reactions of FeCl2 center dot 2H(2)O and 2,2,2-tris(1-pyrazolyl) ethanol HOCH2C(pz)(3) (1) (pz = pyrazolyl) afford [Fe{HOCH2C(pz)(3)}(2)][FeCl4]Cl (2), [Fe{HOCH2C(pz)(3)}(2)](2)[Fe2OCl6](Cl)(2)center dot 4H(2)O (3 center dot 4H(2)O), [Fe{HOCH2C(pz)(3)}(2)] [FeCl{HOCH2C(pz)(3)}(H2O)(2)](2)(Cl)(4) (4) or [Fe{HOCH2C(pz)(3)}(2)]Cl-2 (5), depending on the experimental conditions. Compounds 1-5 were isolated as air-stable crystalline solids and fully characterized, including (1-4) by single-crystal X-ray diffraction analyses. The latter technique revealed strong intermolecular H-bonds involving the OH group of the scorpionate 2 and 3 giving rise to 1D chains which, in 3, are further expanded to a 2D network with intercalated infinite and almost plane chains of H-interacting water molecules. In 4, intermolecular pi center dot center dot center dot pi interactions involving the pyrazolyl rings are relevant. Complexes 2-5 display a high solubility in water (S-25 degrees C ca. 10-12 mg mL(-1)), a favourable feature towards their application as catalysts (or catalyst precursors) for the peroxidative oxidation of cyclo-hexane to cyclohexanol and cyclohexanone, with aqueous H2O2/MeCN, at room temperature (TON values up to ca. 385). (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.
Resumo:
Co‐Re superlattices were prepared with nominal periodicities of 65–67 Å and varying bilayer composition. The structural characterization was made by x‐ray diffraction and Rutherford backscattering spectrometry (RBS). First, second, and third order satellites are observed in the x‐ray diffractogram at 2θ values and with intensities close to those predicted by simulation. This confirms the coherence of the superlattice. RBS measurements combined with RUMP simulations give information on interface sharpness and the absolute thicknesses of the Co and Re layers. Discrepancies between the experimental and simulated diffractograms are found for Co thicknesses below 18 Å.
Resumo:
Trabalho de Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Shape Memory Alloy (SMA) Ni-Ti films have attracted much interest as functional and smart materials due to their unique properties. However, there are still important issues unresolved like formation of film texture and its control as well as substrate effects. Thus, the main challenge is not only the control of the microstructure, including stoichiometry and precipitates, but also the identification and control of the preferential orientation since it is a crucial factor in determining the shape memory behaviour. The aim of this PhD thesis is to study the optimisation of the deposition conditions of films of Ni-Ti in order to obtain the material fully crystallized at the end of the deposition, and to establish a clear relationship between the substrates and texture development. In order to achieve this objective, a two-magnetron sputter deposition chamber has been used allowing to heat and to apply a bias voltage to the substrate. It can be mounted into the six-circle diffractometer of the Rossendorf Beamline (ROBL) at the European Synchrotron Radiation Facility (ESRF), Grenoble, France, enabling an in-situ characterization by X-ray diffraction(XRD) of the films during their growth and annealing. The in-situ studies enable us to identify the different steps of the structural evolution during deposition with a set of parameters as well as to evaluate the effect of changing parameters on the structural characteristics of the deposited film. Besides the in-situ studies, other complementary ex-situ characterization techniques such as XRD at a laboratory source, Rutherford backscattering spectroscopy(RBS), Auger electron spectroscopy (AES), cross-sectional transmission electron microscopy (X-TEM), scanning electron microscopy (SEM), and electrical resistivity (ER) measurements during temperature cycling have been used for a fine structural characterization. In this study, mainly naturally and thermally oxidized Si(100) substrates, TiN buffer layers with different thicknesses (i.e. the TiN topmost layer crystallographic orientation is thickness dependent) and MgO(100) single crystals were used as substrates. The chosen experimental procedure led to a controlled composition and preferential orientation of the films. The type of substrate plays an important role for the texture of the sputtered Ni-Ti films and according to the ER results, the distinct crystallographic orientations of the Ni-Ti films influence their phase transformation characteristics.
Resumo:
Unstabilized rammed earth is a recyclable, economical, and eco-friendly building material, used in the past and still applied today. Traditionally, its use was based on a long empirical knowledge of the local materials. Because this knowledge was mostly lost or is no longer sufficient, in many countries normative documents have been produced to allow the assessment of rammed earth soils. With the aim of contributing for a refining of these normative requirements, this article presents a research work that included: (i) collection of Unstabilized rammed earth samples from six constructions in Portugal; (ii) a literature survey of normative and complementary documents to identify the most mentioned key-properties, the test procedures and the corresponding threshold limits; and (iii) a discussion of the test procedures and of the thresholds limits in the light of the experimental results. The analyzed properties are the particle size distribution, maximum particle size, plasticity, compaction, linear shrinkage, organic content, and salt content. The work highlights the advantages of taking into account the characteristics of existing constructions as a basis for the establishment and further refining of consistent threshold values. In particular, it shows that it is essential to adjust the requirements to the specificities of local materials.
Resumo:
In this work, the mechanical behavior of polyhyroxyalkanoate (PHA)/poly(lactic acid) (PLA) blends is investigated in a wide range of compositions. The mechanical properties can be optimized by varying the PHA contents of the blend. The flexural and tensile properties were estimated by different models: the rule of mixtures, Kerner–Uemura–Takayanagi (KUT) model, Nicolai–Narkis model and Béla–Pukánsky model. This study was aimed at investigating the adhesion between the two material phases. The results anticipate a good adhesion between both phases. Nevertheless, for low levels of incorporation of PHA (up to 30%), where PLA is expectantly the matrix, the experimental data seem to deviate from the perfect adhesion models, suggesting a decrease in the adhesion between both polymeric phases when PHA is the disperse phase. For the tensile modulus, a linear relationship is found, following the rules of mixtures (or a KUT model with perfect adhesion between phases) denoting a good adhesion between the phases over the composition range. The incorporation of PHA in the blend leads to a decrease in the flexural modulus but, at the same time, increases the tensile modulus. The impact energy of the blends varies more than 157% over the entire composition. For blends with PHA weight fraction lower than 50%, the impact strength of the blend is higher than the pure base polymers. The highest synergetic effect is found when the PLA is the matrix and the PHA is the disperse phase for the blend PHA/PLA of 30/70. The second maximum is found for the inverse composition of 70/30. PLA has a heat-deflection temperature (HDT) substantially lower than PHA. For the blends, the HDT increases with the increment in the percentage of the incorporation of PHA. With up to 50% PHA (PLA as matrix), the HDT is practically constant and equal to PLA value. Above this point (PHA matrix), the HDT of the polymer blends increases linearly with the percentage of addition of PHA.
Resumo:
In this study, an experimental investigation into the shear strength behaviour of aluminium alloy single-lap adhesive joints was carried out in order to understand the effect of temperature on the strength of adhesively bonding joints. Single lap joints (SLJs) were fabricated and tested at RT and high temperatures (100ºC, 125ºC, 150ºC, 175ºC and 200ºC). Results showed that the failure loads of the single-lap joint test specimens vary with temperature and this needs to be considered in any design procedure. It is shown that, although the tensile stress decreased with temperature, the lap-shear strength of the adhesive increased with increasing of temperature up to the glass transition of the adhesive (Tg) and decreased for tests above the Tg.