993 resultados para Expansion (Heat)
Resumo:
A numerical investigation has been carried out for the coupled thermal boundary layers on both sides of a partition placed in an isosceles triangular enclosure along its middle symmetric line. The working fluid is considered as air which is initially quiescent. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes three distinct stages; namely an initial stage, a transitional stage and a steady state stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed and compared with the non-partitioned enclosure. Moreover, heat transfer as a form of local and overall average Nusselt number through the coupled thermal boundary layers and the inclined walls is also examined.
Resumo:
A large subsurface, elevated temperature anomaly is well documented in Central Australia. High Heat Producing Granites (HHPGs) intersected by drilling at Innamincka are often assumed to be the dominant cause of the elevated subsurface temperatures, although their presence in other parts of the temperature anomaly has not been confirmed. Geological controls on the temperature anomaly remain poorly understood. Additionally, methods previously used to predict temperature at 5 km depth in this area are simplistic and possibly do not give an accurate representation of the true distribution and magnitude of the temperature anomaly. Here we re-evaluate the geological controls on geothermal potential in the Queensland part of the temperature anomaly using a stochastic thermal model. The results illustrate that the temperature distribution is most sensitive to the thermal conductivity structure of the top 5 km. Furthermore, the results indicate the presence of silicic crust enriched in heat producing elements between and 40 km.
Resumo:
Numerical investigation is carried out for natural convection heat transfer in an isosceles triangular enclosure partitioned in the centre by a vertical wall with infinite conductivity. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. As a result, heat is transferred between both sides of the enclosure through the conducting vertical wall with natural convection boundary layers forming adjacent to the middle partition and two inclined surfaces. The Finite Volume based software, Ansys 14.5 (Fluent) is used for the numerical simulations. The numerical results are obtained for different values of aspect ratio, A (0.2, 0.5 and 1.0) and Rayleigh number, Ra (10^5 <= Ra <= 10^8) for a fixed Prandtl number, Pr = 0.72 of air. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes several distinct stages including an initial stage, a transitional stage and a steady stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed in this study.
Resumo:
Osmotic treatments are often applied prior to convective drying of foods to impart sensory appeal aspects. During this process a multicomponent mass flow, composed mainly of water and osmotic agent, takes place. In this work, a heat and mass transfer model for the osmo-convective drying of yacon was developed and solved by the Finite Element Method using COMSOL Multiphysics®, considering a 2-D axisymmetric geometry and moisture dependent thermophysical properties. Yacon slices were osmotically dehydrated for 2 hours in a solution of sucralose and then dried in a tray dryer for 3 hours. The model was validated by experimental data of temperature, moisture content and sucralose uptake (R²> 0.90).
Resumo:
Natural convection thermal boundary layer adjacent to the heated inclined wall of a right angled triangle with an adiabatic fin attached to that surface is investigated by numerical simulations. The finite volume based unsteady numerical model is adopted for the simulation. It is revealed from the numerical results that the development of the boundary layer along the inclined surface is characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady stage. These three stages can be clearly identified from the numerical simulations. Moreover, in presence of adiabatic fin, the thermal boundary layer adjacent to the inclined wall breaks initially. However, it is reattached with the downstream boundary layer next to the fin. More attention has been given to the boundary layer development near the fin area.
Resumo:
Bi-2212 tapes were fabricated using a powder-in-tube method and their superconducting properties were measured as a function of heat treatment. The tapes were heated to temperature, T1 (884-915 °C), and kept at that temperature for 20 min to induce partial (incongruent) melting. The samples were cooled to T2 with a ramp rate of 120 °C h-1 and then slowly cooled to T3 with a cooling rate, R2, and from T3 to T4 with a cooling rate, R3. The tapes were kept at the temperature T4 for P1 hours and then cooled to room temperature. Both R1 and R2 were chosen between 2 and 8 °C h-1. It was found that the structure and Jc of the tapes depend on the sintering conditions, i.e. T1-4, R1-3 and P1. The highest Jc of 5800 Å cm-2 was obtained at 77 K in a self-field with heat treatment where T1 = 894 and 899 °C, R1 = R2 = 5 °C h-1 and P1 = 6 h were employed. When 0.7% of bend strain, which is equivalent to a bend radius of 5 mm, was applied to the tape, 80% of the initial Jc was sustained.
Resumo:
Background The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. Results We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, ?, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and ?. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D = 161 - 243 ?m2 hour-1, q = 0.3 - 0.5 (low to moderate strength) and ? = 0.0305 - 0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. Conclusions Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.
Resumo:
Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
Australia is a high potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage.However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional(2D numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
Numerical simulations of thermomagnetic convection of paramagnetic fluids placed in a micro-gravity condition (g ≈ 0) and under a uniform vertical gradient magnetic field in an open ended square enclosure with ramp heating temperature condition applied on a vertical wall is investigated in this study. In presence of the strong magnetic gradient field thermal convection of the paramagnetic fluid might take place even in a zero-gravity environment as a direct consequence of temperature differences occurring within the fluid. The thermal boundary layer develops adjacent to the hot wall as soon as the ramp temperature condition is applied on it. There are two scenarios can be observed based on the ramp heating time. The steady state of the thermal boundary layer can be reached before the ramp time is finished or vice versa. If the ramp time is larger than the quasi-steady time then the thermal boundary layer is in a quasi-steady mode with convection balancing conduction after the quasi-steady time. Further increase of the heat input simply accelerates the flow to maintain the proper thermal balance. Finally, the boundary layer becomes completely steady state when the ramp time is finished. Effects of magnetic Rayleigh number, Prandtl number and paramagnetic fluid parameter on the flow pattern and heat transfer are presented.
Resumo:
In this study, the mixed convection heat transfer and fluid flow behaviors in a lid-driven square cavity filled with high Prandtl number fluid (Pr = 5400, ν = 1.2×10-4 m2/s) at low Reynolds number is studied using thermal Lattice Boltzmann method (TLBM) where ν is the viscosity of the fluid. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effects of the variations of non dimensional mixed convection parameter called Richardson number(Ri) with and without heat generating source on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles as well as stream function and temperature contours for Ri ranging from 0.1 to 5.0 with other controlling parameters that present in this study. It is found that LBM has good potential to simulate mixed convection heat transfer and fluid flow problem. Finally the simulation results have been compared with the previous numerical and experimental results and it is found to be in good agreement.
Resumo:
Objective Dehydration and symptoms of heat illness are common among the surface mining workforce. This investigation aimed to determine whether heat strain and hydration status exceeded recommended limits. Methods Fifteen blast crew personnel operating in the tropics were monitored across a 12-hour shift. Heart rate, core body temperature, and urine-specific gravity were continuously recorded. Participants self-reported fluid consumption and completed a heat illness symptom inventory. Results Core body temperature averaged 37.46 +/- 0.13[degrees]C, with the group maximum 37.98 +/- 0.19[degrees]C. Mean urine-specific gravity was 1.024 +/- 0.007, with 78.6% of samples 1.020 or more. Seventy-three percent of workers reported at least one symptom of heat illness during the shift. Conclusions Core body temperature remained within the recommended limits; however, more than 80% of workers were dehydrated before commencing the shift, and tended to remain so for the duration.
Resumo:
Young children are thought to be particularly sensitive to heatwaves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children’s health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: “heatwave”, “heat wave”, “child health”, “morbidity”, “hospital admission”, “emergency department visit”, “family practice”, “primary health care”, “death” and “mortality”. Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children’s health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children’s health perspective, identifying the best measure of children’s exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children’s birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children’s disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.