939 resultados para Ethanol tolerance
Resumo:
An emerging idea is that long-term alcohol abuse results in changes in gene expression in the brain and that these changes are responsible at least partly for alcohol tolerance, dependence and neurotoxicity, The overall goal of our research is to identify genes which are differentia[ly expressed in the brains of well-characterized human alcoholics as compared with non-alcoholics. This should identify as-yet-unknown alcohol-responsive genes, and may well confirm changes in the expression of genes which have been delineated in animal models of alcohol abuse. Cases were carefully selected and samples pooled on the basis of relevant criteria; differential expression was monitored by microarray hybridization. The inherent diversity of human alcoholics can be exploited to identify genes associated with specific pathological processes, as well as to assess the effects of concomitant disease, severity of brain damage, drinking behavior, and factors such as gender and smoking history. initial results show selective changes in gene expression in alcoholics; of particular importance is a coordinated reduction in genes coding for myelin components, Copyright (C) 2001 National Science Council, ROC and S. Karger AG, Basel.
Resumo:
Adaptive changes that occur after chronic exposure to ethanol are an important component in the development of physical dependence. We have focused our research on ethanol-induced changes in the expression of several genes that may be important in adaptation. In this article, we describe adaptive changes at the level of the N-methyl-D-aspartate receptor, in the protein expression and activity of the Egr transcription factors, and in the expression of a novel gene of unknown function. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Selection in the thymus restricted by MHC and self-peptide shapes the diverse reactivities of the T-cell population which subsequently seeds into the peripheral tissues, in anticipation of the universe of pathogen antigens to which the organism may be exposed. A necessary corollary is the potential for T-cell self-reactivity (autoimmunity) in the periphery. Transgenic mouse models in which transgene expression in the thymus is prevented or excluded, have been particularly useful for determining the immunological outcome when T-cells encounter transgene-encoded 'self' antigen in peripheral tissues. Data suggest that non-mutually exclusive mechanisms of T-cells 'ignoring' self-antigen, T-cell deletion, T-cell anergy and T-cell immunoregulation have evolved to prevent self-reactivity while maintaining T-cell diversity. The peripheral T-cell repertoire, far from being static following maturation through the thymus, is in a dynamic stated determined by these peripheral selective and immunoregulatory influences. This article reviews the evidence with particular reference to CD8+ive T-cells.
Resumo:
Objective-To determine reference values and test variability for glucose tolerance tests (GTT), insulin tolerance tests (ITT), and insulin sensitivity tests (IST) in cats, Animals-32 clinically normal cats. Procedure-GTT, ITT, and IST were performed on consecutive days. Tolerance intervals tie, reference values) were calculated as means +/- 2.397 SD for plasma glucose and insulin concentrations, half-life of glucose (T-1/2glucose), rate constants for glucose disappearance (K-glucose and K-itt), and insulin sensitivity index (S-l). Tests were repeated after 6 weeks in 8 cats to determine test variability. Results-Reference values for T-1/2glucose, K-glucose, and fasting plasma glucose and insulin concentrations during GTT were 45 to 74 minutes, 0.93 to 1.54 %/min, 37 to 104 mg/dl, and 2.8 to 20.6 muU/ml, respectively. Mean values did not differ between the 2 tests. Coefficients of variation for T-1/2glucose, K-glucose, and fasting plasma glucose and insulin concentrations were 20, 20, 11, and 23%, respectively. Reference values for K-itt were 1.14 to 7.3%/min, and for S-l were 0.57 to 10.99 x 10(-4) min/muU/ml. Mean values did not differ between the 2 tests performed 6 weeks apart, Coefficients of variation for K-itt and S-l were 60 and 47%, respectively. Conclusions and Clinical Relevance-GTT, ITT, and IST can be performed in cats, using standard protocols. Knowledge of reference values and test variability will enable researchers to better interpret test results for assessment of glucose tolerance, pancreatic beta -cell function, and insulin sensitivity in cats.
Resumo:
Dendritic cells (DC) have a key role in controlling the immune response, by determining the outcome of antigen presentation to T cells. Through costimulatory molecules and other factors, DC are involved in the maintenance of peripheral tolerance through modulation of the immune response. This modulation occurs both constitutively, and in inflammation, in order to prevent autoimmunity and to control established immune responses. Dendritic cell control of immune responses may be mediated through cytokine or cell-contact dependent mechanisms. The molecular and cellular basis of these controls is being understood at an increasingly more complex level. This understanding is reaching a level at which DC-based therapies for the induction of immune regulation in autoimmunity can be tested in vivo. This review outlines the current state of knowledge of DC in immune tolerance, and proposes how DC might control both T cell responses, and themselves, to prevent autoimmunity and maintain peripheral tolerance.
Resumo:
The effect of dietary chromium supplementation on glucose and insulin metabolism in healthy, non-obese cats was evaluated. Thirty-two cats were randomly divided into four groups and fed experimental diets consisting of a standard diet with 0 ppb (control), 150 ppb, 300 ppb, or 600 ppb added chromium as chromium tripicolinate. Intravenous glucose tolerance, insulin tolerance and insulin sensitivity tests with minimal model analysis were performed before and after 6 weeks of feeding the test diets. During the glucose tolerance test, glucose concentrations, area under the glucose concentration-time curve, and glucose half-life (300 ppb only), were significantly lower after the trial in cats supplemented with 300 ppb and 600 ppb chromium, compared with values before the trial. Fasting glucose concentrations measured on a different day in the biochemistry profile were also significantly lower after supplementation with 600 ppb chromium. There were no significant differences in insulin concentrations or indices in either the glucose or insulin tolerance tests following chromium supplementation, nor were there any differences between groups before or after the dietary trial. Importantly, this study has shown a small but significant, dose-dependent improvement in glucose tolerance in healthy, non-obese cats supplemented with dietary chromium. Further long-term studies are warranted to determine if the addition of chromium to feline diets is advantageous. Cats most likely to benefit are those with glucose intolerance and insulin resistance from lack of exercise, obesity and old age. Healthy cats at risk of glucose intolerance and diabetes from underlying low insulin sensitivity or genetic factors may also benefit from long-term chromium supplementation. (C) 2002 ESFM and AAFP.
Resumo:
A sample of recombinant inbred lines (RILs) was derived from a bi-parental cross between Lemont and BK88-BR6, which contrasted in maintenance of leaf water potential (LWP) and expression of osmotic adjustment (OA). Genotypic variation for LWP and OA, and their associations with yield determination under water deficit, was studied in a series of five field experiments. Genotypic variation in the maintenance of high LWP was consistent across water deficit experiments. In the determination of genotypic variation in the maintenance of LWP, rate of water deficit was not an important factor influencing ranking, but degree of water deficit, and phenological development stage were important, particularly around heading. Genotypic variation in expression of OA was also observed under water deficits during both vegetative and flowering stages but ranking was inconsistent across experiments. This was in part because of large experimental errors associated with its measurement, but also because the expression of OA was associated with extent of decline of LWP. The relationship between OA and LWP was demonstrated when data were combined across experiments for vegetative and flowering stages. Under water-limited conditions around flowering, grain yield reduction was mainly due to a increased spikelet sterility. Variation in OA was not related to grain yield nor yield components. There were however, negative phenotypic and genetic correlations between LWP and percentage spikelet sterility measured at flowering stage on panicles at the same development stage during a water deficit treatment. This suggests that traits contributing to the maintenance of high LWP minimized the effects of water deficit on spikelet sterility and consequently grain yield. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Raw macadamia kernel pieces were immersed in water (specific gravity 1.00 g/cm(3)), brine (SG 1.02 g/cm(3)) or ethanol solution (SG 0.97 g/cm(3)) for 30 or 60 s, then re-dried to below 1.5% moisture (wet basis) and stored under vacuum for 0, 4 and 12 months. Flotation in water had no effect on the quality or shelf life of the kernel pieces over 12 months storage, as measured by sensory evaluation of the kernels and chemical analysis of the kernel oil. Immersion in a salt solution caused unacceptable changes in quality during storage, increasing as storage time increased. Flotation in dilute ethanol also caused unacceptable quality changes during storage. Therefore, only flotation of macadamia kernel pieces in water can be recommended for commercial operations. Microbiological concerns with such a process still need to be addressed.
Resumo:
Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in western society. We investigated possible changes in glutamate receptor levels in neonatal animals following ethanol exposure using radioligand binding and western blot analysis. We used a vapor chamber to administer ethanol to neonatal Wistar rats 3 h a day from postnatal day (PND) 4-9. A separation control group was separated from their mothers for the same time and duration as the vapor treatment, while a normal control group was left to develop normally. Daily ethanol administrations resulted in decreased brain weight and body weight, as well as microencephaly (decreased brain:body weight ratio). Neither the affinity nor maximum binding of [H-3]MK-801 (dizoclipine maleate) in the cortex of PND10 rats differed between treatment groups. Western blot analysis also failed to reveal any changes in NMDAR1, NMDAR2A, or NMDAR2B receptor levels. In contrast, the AMPA receptor subunit GluR1 was greatly reduced in vapor-treated pups compared with control pups, as revealed by western blot analysis. A similar reduction was found in westerns with an antibody recognizing the GluR2 and 4 subunits. These results indicate that ethanol reduces AMPA rather than NMDA receptors in the developing neocortex, possibly by blocking NMDA receptors during development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Whole macadamia kernels were immersed in water (specific gravity 1.00 g/cm(3)), brine (SG 1.02 g/cm(3)) and ethanol solution (SG 0.97 g/cm(3)) for 30 or 60 s, re-dried to 1.0-1.5% moisture (wet basis) and stored under vacuum for 0, 4 and 12 months. Immersion in water had no effect on the quality or shelf life of kernels, as measured by sensory evaluation and analysis of the kernel oil. Immersion in brine and ethanol solutions changed the flavour of kernels, but had no effect on shelf life or kernel oil stability over 12 months storage. Water flotation to separate kernels based on differences in oil content is therefore feasible, but microbiological concerns need to be investigated.
Resumo:
Previous studies have demonstrated that the initial hypoalgesic effect of spinal manipulative therapy was not antagonized by naloxone and did not exhibit tolerance with repeated applications. The implication is that endogenous opioid mechanisms of pain relief are probably not at play in spinal manipulative therapy. The role of endogenous opioid peptides in manipulation of the peripheral joints has not been investigated. The aim of this study was to evaluate whether the initial hypoalgesic effect of a peripheral manipulative technique (mobilization-with-movement treatment for the elbow) demonstrated a tolerance to repeated applications (ie, reduction in magnitude of effect over repeated applications). Twenty-four participants with unilateral chronic lateral epicondylalgia participated in the study. A repeated measures study was conducted to examine the effect of repeated applications of the mobilization-with-movement treatment for the elbow on 6 separate treatment occasions at least 2 days apart. Pain-free grip strength and pressure pain threshold were chosen as the pain-related outcome measures. Changes in the percent maximum possible effect scores of measures of hypoalgesia were evaluated across the 6 treatment sessions by using linear trend analysis. The results showed no significant difference for the hypoalgesic effect of the treatment technique between sessions (P >.05). This peripheral manipulative therapy treatment technique appeared to have a similar effect profile to previously studied spinal manipulative therapy techniques, thereby contributing to the body of knowledge that indicates that manipulative therapy most likely induces a predominant non-opioid form of analgesia.