935 resultados para Erythroleukemia Cell-differentiation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There has been persistent controversy regarding the nature of cell differentiation in alveolar soft-part sarcoma (ASPS) since its first description in 1952. Some studies suggest that ASPS might represent an unusual variant of skeletal muscle tumor, Given the availability of new monoclonal antibodies to probe for skeletal muscle differentiation and the rapid advance in immunocytochemical techniques for deparaffinized, formalin-fixed tissue sections, we wished to test the proposed hypothesis that ASPS might represent a new type of rhabdomyosarcoma Twelve archival samples of ASPS were retrieved, and we investigated the expression of two myogenic regulatory proteins, MyoD1 and myogenin, as rvell as other muscle-associated proteins, using sensitive immunocytochemical techniques. Despite the presence of desmin immunostaining in six ASPSs, no tumors were positive for either muscle actin or myoglobin Most importantly, no specimen showed nuclear expression of MyoD1 or myogenin, In 11 tumors, however, there was considerable granular immunostaining in the tumor cell cytoplasm with the anti-MyoD1 monoclonal antibody 5.8A, a phenomenon observed in various nonmuscle normal and neoplastic tissues with this antibody, To analyze the exact nature of immunostaining of MyoD1 and desmin in ASPS, biochemical analyses using available fresh frozen tumor tissue were performed, Although a 53-kDa band was noted with antidesmin antibody on Western blot analysis, no specific protein band that corresponds to the 45-kDa MyoD1 was detected with antibody 5.8A. These results confirm the presence of desmin in ASPS but argue against authentic expression of MyoD1, They also suggest that the cytoplasmic immunostaining observed with anti-MyoD1 antibody 5.8A most likely represents a nonspecific cross-reaction with an unknown cytoplasmic antigen, Considering the master role that MyoD1 and myogenin play in skeletal muscle commitment and differentiation and the lack of expression of these two proteins in ASPS as determined immunocytochemically and biochemically, we think that the histogenesis of ASPS remains unknown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present results show that in the ovarioles of a newly emerged (0 day) queen of A. mellifera only two regions may be distinguished: a proximal, short germarium and a very long distal, terminal filament. As the queen matures and gets ready for the nupcial flight, the germarium increases in lenght, advancing towered the distal end, as the terminal filament shortens. The ovarioles of queens ready to mate (6 to 8 days old) have, already one or two ovarian follicles, i.e. a very short proximal vitellarium, but a real vitellogenesis only starts after the fecundation. If the queen does not mate the ovarioles structure is disrupted (12-16 days old). In mated queen eggs the ovarioles present three differentiated regions, from the apice to the basis: a short terminal filament, a medium size germarium, and a very long basal vitellarium. As the eggs are laid, the emptied follicle collapses, degenerates and produces a corpus luteum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this work was to study the karyotype, spermatogenesis and nucleolar activity at meiosis, in the species Rhodnius domesticus (Heteroptera, Triatominae). The testicular tubules were cytologically prepared by the conventional method of cell crushing and subsequent application of cytogenetic staining techniques with lacto-acetic orcein and silver-ion impregnation. The species under study presented karyotype 2n= 20A+XY, the modal number of the subfamily Triatominae. The chromosomes presented no primary constriction and were therefore characterized as holocentric. It was observed that the sex chromosomes sometimes were located at the periphery, close to the ring formed by autosomes, at first meiotic division. At metaphases II, sex chromosomes were positioned in the center of the autosomal ring, thus evidencing a postreductional behavior. These same chromosomes showed late migration at anaphases and were clearly impregnated with silver-ions, suggesting they bore Nucleolar Organizer Regions. Dispersed nucleolar corpuscles in cytoplasm until telophase II and small dots in spermatids strongly impregnated with silver, could be seen. Thus, it may be inferred that, in triatomines, the nucleolus does not completely disappear but remains in the form of small corpuscles that have a role in cell differentiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted in immunodeficient mice. We also investigated the ability of the cell lines to form colonies and copy number alterations by array comparative genomic hybridization. Histopathological analysis showed that the invasive primary tumor from which the MACL-1 cell line was derived, was a luminal A subtype carcinoma, while the ductal carcinoma in situ (DCIS) that gave rise to the MGSO-3 cell line was a HER2 subtype tumor, both showing different proliferation levels. The cell lines and the tumor xenografts in mice preserved their high proliferative potential, but did not maintain the expression of the other markers assessed. This shift in expression may be due to the selection of an 'establishment' phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines to be potentially used for comparative research. © 2013 Spandidos Publications Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n=5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1×105) were than encapsulated inside 60μl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI. © 2013 Informa UK Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Currently, much attention has been devoted to the renewal of knowledge about Stem Cells and Cell Therapy in domestic species. In this sense, the present work aimed to develop a methodology for collecting, processing and cultivation of mesenchymal stem cells obtained from bone marrow of coxal tuberosity in buffaloes. The collection was performed using a Komiyashiki needle, which was introduced in the coxal tuberosity and the bone marrow aspirated into a heparinized syringe with the aid of negative pressure. Directly after collection samples were processed at the laboratory at FMVZ - UNESP. The samples took approximately 32 days to reach 80% confluence, when the first passage and differentiation was performed. To confirm the mesenchymal origin, cells were induced to differentiate into adipogenic and osteogenic lineages. Samples showed morphological changes during differentiation protocol, but not all presented production of extracellular deposits of calcium or intracellular fat droplets, observed after staining with Alizarin Red and Oil Red respectively. Compared with the material obtained from other species and processed in the same laboratory, the primary culture was longer. Therefore, more studies are needed to standardize the age of animals used and to test other inducers of cell differentiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: This report highlights phytoconstituents present in Cissus quadrangularis (CQ) extract and examines biphasic (proliferative and anti-proliferative) effects of its extract on bone cell proliferation, differentiation, mineralization, ROS generation, cell cycle progression and Runx2 gene expression in primary rat osteoblasts. Materials and methods: Phytoconstituents were identified using gas chromatography-mass spectroscopy (GC-MS). Osteoblasts were exposed to different concentrations (10-100g/ml) of CQ extract and cell proliferation and cell differentiation were investigated at different periods of time. Subsequently, intracellular ROS intensity, apoptosis and matrix mineralization of osteoblasts were evaluated. We performed flow cytometry for DNA content and real-time PCR for Runx2 gene expression analysis.Results: CQ extract's approximately 40 bioactive compounds of fatty acids, hydrocarbons, vitamins and steroidal derivatives were identified. Osteoblasts exposed to varying concentrations of extract exhibited biphasic variation in cell proliferation and differentiation as a function of dose and time. Moreover, lower concentrations (10-50g/ml) of extract slightly reduced ROS intensity, although they enhanced matrix mineralization, DNA content in S phase of the cell cycle, and levels of Runx2 expression. However, higher concentrations (75-100g/ml) considerably induced the ROS intensity and nuclear condensation in osteoblasts, while it reduced mineralization level, proportion of cells in S phase and Runx2 level of the osteogenic gene.Conclusions: These findings suggest that CQ extract revealed concentration-dependent biphasic effects, which would contribute notably to future assessment of pre-clinical efficacy and safety studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human N-myc downstream-regulated gene 1 (NDRG1) is a metastasis suppressor gene with several potential functions, including cell differentiation, cell cycle regulation and response to hormones, nickel and stress. The purpose of this study was to investigate the immunoexpression of NDRG1 in oral and oropharyngeal squamous cell carcinomas searching for its role in the clinical course of these tumors. We investigated immunohistochemical expression of NDRG1 protein in 412 tissue microarray cores of tumor samples from 103 patients with oral and oropharyngeal squamous cell carcinomas and in 110 paraffin-embedded surgical margin sections. The results showed NDRG1 up-regulation in 101/103 (98.1 %) tumor samples, but no expression in any normal tissue sample. Western blot assays confirmed the immunohistochemical findings, suggesting that lower levels of NDRG1 are associated with a high mortality rate. NDRG1 overexpression was related to long-term specific survival (HR = 0.38; p = 0.009), whereas the presence of lymph-node metastasis showed the opposite association with survival (HR = 2.45; p = 0.013). Our findings reinforce the idea that NDRG1 plays a metastasis suppressor role in oral and oropharyngeal squamous cell carcinomas and may be a useful marker for these tumors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background The implication of post-transcriptional regulation by microRNAs in molecular mechanisms underlying cancer disease is well documented. However, their interference at the cellular level is not fully explored. Functional in vitro studies are fundamental for the comprehension of their role; nevertheless results are highly dependable on the adopted cellular model. Next generation small RNA transcriptomic sequencing data of a tumor cell line and keratinocytes derived from primary culture was generated in order to characterize the microRNA content of these systems, thus helping in their understanding. Both constitute cell models for functional studies of microRNAs in head and neck squamous cell carcinoma (HNSCC), a smoking-related cancer. Known microRNAs were quantified and analyzed in the context of gene regulation. New microRNAs were investigated using similarity and structural search, ab initio classification, and prediction of the location of mature microRNAs within would-be precursor sequences. Results were compared with small RNA transcriptomic sequences from HNSCC samples in order to access the applicability of these cell models for cancer phenotype comprehension and for novel molecule discovery. Results Ten miRNAs represented over 70% of the mature molecules present in each of the cell types. The most expressed molecules were miR-21, miR-24 and miR-205, Accordingly; miR-21 and miR-205 have been previously shown to play a role in epithelial cell biology. Although miR-21 has been implicated in cancer development, and evaluated as a biomarker in HNSCC progression, no significant expression differences were seen between cell types. We demonstrate that differentially expressed mature miRNAs target cell differentiation and apoptosis related biological processes, indicating that they might represent, with acceptable accuracy, the genetic context from which they derive. Most miRNAs identified in the cancer cell line and in keratinocytes were present in tumor samples and cancer-free samples, respectively, with miR-21, miR-24 and miR-205 still among the most prevalent molecules at all instances. Thirteen miRNA-like structures, containing reads identified by the deep sequencing, were predicted from putative miRNA precursor sequences. Strong evidences suggest that one of them could be a new miRNA. This molecule was mostly expressed in the tumor cell line and HNSCC samples indicating a possible biological function in cancer. Conclusions Critical biological features of cells must be fully understood before they can be chosen as models for functional studies. Expression levels of miRNAs relate to cell type and tissue context. This study provides insights on miRNA content of two cell models used for cancer research. Pathways commonly deregulated in HNSCC might be targeted by most expressed and also by differentially expressed miRNAs. Results indicate that the use of cell models for cancer research demands careful assessment of underlying molecular characteristics for proper data interpretation. Additionally, one new miRNA-like molecule with a potential role in cancer was identified in the cell lines and clinical samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Supercritical Emulsion Extraction technology (SEE-C) was proposed for the production of poly-lactic-co-glycolic acid microcarriers. SEE-C operating parameters as pressure, temperature and flow rate ratios were analyzed and the process performance was optimized in terms of size distribution and encapsulation efficiency. Microdevices loaded with bovine serum insulin were produced with different sizes (2 and 3 µm) or insulin charges (3 and 6 mg/g) and with an encapsulation efficiency of 60%. The microcarriers were characterized in terms of insulin release profile in two different media (PBS and DMEM) and the diffusion and degradation constants were also estimated by using a mathematical model. PLGA microdevices were also used in a cultivation of embryonic ventricular myoblasts (cell line H9c2 obtained from rat) in a FBS serum free medium to monitor cell viability and growth in dependence of insulin released. Good cell viability and growth were observed on 3 µm microdevices loaded with 3 mg/g of insulin. PLGA microspheres loaded with growth factors (GFs) were charged into alginate scaffold with human Mesenchimal Steam Cells (hMSC) for bone tissue engineering with the aim of monitoring the effect of the local release of these signals on cells differentiation. These “living” 3D scaffolds were incubated in a direct perfusion tubular bioreactor to enhance nutrient transport and exposing the cells to a given shear stress. Different GFs such as, h-VEGF, h-BMP2 and a mix of two (ratio 1:1) were loaded and alginate beads were recovered from dynamic (tubular perfusion system bioreactor) and static culture at different time points (1st, 7th, 21st days) for the analytical assays such as, live/dead; alkaline phosphatase; osteocalcin; osteopontin and Van Kossa Immunoassay. The immunoassay confirmed always a better cells differentiation in the bioreactor with respect to the static culture and revealed a great influence of the BMP-2 released in the scaffold on cell differentiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The full blood cell (FBC) count is the most common indicator of diseases. At present hematology analyzers are used for the blood cell characterization, but, recently, there has been interest in using techniques that take advantage of microscale devices and intrinsic properties of cells for increased automation and decreased cost. Microfluidic technologies offer solutions to handling and processing small volumes of blood (2-50 uL taken by finger prick) for point-of-care(PoC) applications. Several PoC blood analyzers are in use and may have applications in the fields of telemedicine, out patient monitoring and medical care in resource limited settings. They have the advantage to be easy to move and much cheaper than traditional analyzers, which require bulky instruments and consume large amount of reagents. The development of miniaturized point-of-care diagnostic tests may be enabled by chip-based technologies for cell separation and sorting. Many current diagnostic tests depend on fractionated blood components: plasma, red blood cells (RBCs), white blood cells (WBCs), and platelets. Specifically, white blood cell differentiation and counting provide valuable information for diagnostic purposes. For example, a low number of WBCs, called leukopenia, may be an indicator of bone marrow deficiency or failure, collagen- vascular diseases, disease of the liver or spleen. The leukocytosis, a high number of WBCs, may be due to anemia, infectious diseases, leukemia or tissue damage. In the laboratory of hybrid biodevices, at the University of Southampton,it was developed a functioning micro impedance cytometer technology for WBC differentiation and counting. It is capable to classify cells and particles on the base of their dielectric properties, in addition to their size, without the need of labeling, in a flow format similar to that of a traditional flow cytometer. It was demonstrated that the micro impedance cytometer system can detect and differentiate monocytes, neutrophils and lymphocytes, which are the three major human leukocyte populations. The simplicity and portability of the microfluidic impedance chip offer a range of potential applications in cell analysis including point-of-care diagnostic systems. The microfluidic device has been integrated into a sample preparation cartridge that semi-automatically performs erythrocyte lysis before leukocyte analysis. Generally erythrocytes are manually lysed according to a specific chemical lysis protocol, but this process has been automated in the cartridge. In this research work the chemical lysis protocol, defined in the patent US 5155044 A, was optimized in order to improve white blood cell differentiation and count performed by the integrated cartridge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adoptive T cell therapy using antigen-specific T lymphocytes is a powerful immunotherapeutic approach against cancer. Nevertheless, many T cells against tumor-antigens exhibit only weak anti-tumoral response. To overcome this barrier it is necessary to improve the potency and anti-tumoral efficacy of these T cells. Activation and activity of T cells are tightly controlled to inhibit unwanted T cell responses and to reduce the risk of autoimmunity. Both are regulated by extrinsic signals and intrinsic mechanisms which suppress T cell activation. The intrinsic mechanisms include the expression of phosphatases that counteract the activation-inducing kinases. Modifying the expression of these phosphatases allows the targeted modulation of T cell reactivity. MicroRNAs (miRNAs) are regulatory small noncoding RNA molecules that control gene expression by targeting messenger RNAs in a sequence specific manner. Gene-specific silencing plays a key role in diverse biological processes, such as development, differentiation, and functionality. miR181a has been shown to be highly expressed in immature T cells that recognize low-affinity antigens.rnThe present study successfully shows that ectopic expression of miR181a is able to enhance the sensitivity of both murine and human T cells. In CD4+ T helper cells as well as in CD8+ cytotoxic T cells the overexpression of miR181a leads to downregulation of multiple phosphatases involved in the T cell receptor signaling pathway. Overexpression of miR181a in human T cells achieves a co-stimulatory independent activation and has an anti-apoptotic effect on CD4+ T helper cells. Additionally, increasing the amount of miR181a enhances the cytolytic activity of murine CD8+ TCRtg T cells in an antigen-specific manner.rnTo test miR181a overexpressing T cells in vivo, a mouse tumor model using a B cell lymphoma cell line (A20-HA) expressing the Influenza hemagglutinin (Infl.-HA) antigen was established. The expression of model antigens in tumor cell lines enables targeted elimination of tumors using TCRtg T cells. The transfer of miR181a overexpressing Infl.-HA TCRtg CD8+ T cells alone has no positive effect neither on tumor control nor on survival of A20-HA tumor-bearing mice. In contrast, the co-transfer of miR181a overexpressing Infl.-HA TCRtg CD8+ and CD4+ T cells leads to improved tumor control and prolongs survival of A20-HA tumor-bearing mice. This effect is characterized by higher amounts of effector T cells and the expansion of Infl.-HA TCRtg CD8+ T cells.rnAll effects were achieved by changes in expression of several genes including molecules involved in T cell differentiation, activation, and regulation, cytotoxic effector molecules, and receptors important for the homing process of T cells in miR181a overexpressing T cells. The present study demonstrates that miR181a is able to enhance the anti-tumoral response of antigen-specific T cells and is a promising candidate for improving adoptive cell therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Real living cell is a complex system governed by many process which are not yet fully understood: the process of cell differentiation is one of these. In this thesis work we make use of a cell differentiation model to develop gene regulatory networks (Boolean networks) with desired differentiation dynamics. To accomplish this task we have introduced techniques of automatic design and we have performed experiments using various differentiation trees. The results obtained have shown that the developed algorithms, except the Random algorithm, are able to generate Boolean networks with interesting differentiation dynamics. Moreover, we have presented some possible future applications and developments of the cell differentiation model in robotics and in medical research. Understanding the mechanisms involved in biological cells can gives us the possibility to explain some not yet understood dangerous disease, i.e the cancer. Le cellula è un sistema complesso governato da molti processi ancora non pienamente compresi: il differenziamento cellulare è uno di questi. In questa tesi utilizziamo un modello di differenziamento cellulare per sviluppare reti di regolazione genica (reti Booleane) con dinamiche di differenziamento desiderate. Per svolgere questo compito abbiamo introdotto tecniche di progettazione automatica e abbiamo eseguito esperimenti utilizzando vari alberi di differenziamento. I risultati ottenuti hanno mostrato che gli algoritmi sviluppati, eccetto l'algoritmo Random, sono in grado di poter generare reti Booleane con dinamiche di differenziamento interessanti. Inoltre, abbiamo presentato alcune possibili applicazioni e sviluppi futuri del modello di differenziamento in robotica e nella ricerca medica. Capire i meccanismi alla base del funzionamento cellulare può fornirci la possibilità di spiegare patologie ancora oggi non comprese, come il cancro.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The homeodomain-only protein (HOP) contains an atypical homeodomain which is unable to bind to DNA due to mutations in residues important for DNA binding. Recently, HOP was reported to regulate proliferation/differentiation homeostasis in different cell types. In the present study, we performed transcriptional profiling of cultured primary human keratinocytes and noted a robust induction of HOP upon calcium-induced cell differentiation. Immunohistochemistry of human skin localized HOP to the granular layer in the epidermis. Overexpression of HOP using a lentiviral vector up-regulated FLG and LOR expression during keratinocyte differentiation. Conversely, decreasing HOP expression using small interfering RNA markedly reduced the calcium-induced expression of late markers of differentiation in vitro, with the most prominent effect on profilaggrin (FLG) mRNA. Moreover, mRNA levels of profilaggrin and loricrin were downregulated in the epidermis of HOP knockout mice. Analysis of skin disorders revealed altered HOP expression in lichen planus, psoriasis and squamous cell carcinoma (SCC). Our data indicate that HOP is a novel modulator of late terminal differentiation in keratinocytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.