989 resultados para Energy prices


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a forecasting technique for forward electricity/gas prices, one day ahead. This technique combines a Kalman filter (KF) and a generalised autoregressive conditional heteroschedasticity (GARCH) model (often used in financial forecasting). The GARCH model is used to compute next value of a time series. The KF updates parameters of the GARCH model when the new observation is available. This technique is applied to real data from the UK energy markets to evaluate its performance. The results show that the forecasting accuracy is improved significantly by using this hybrid model. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of three techniques to improve performance of some standard fore-casting models, application to the energy demand and prices. We focus on forecasting demand and price one-day ahead. First, the wavelet transform was used as a pre-processing procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have empirically compared these approaches and found that the former consistently outperformed the latter. Second, adaptive models were introduced to continuously update model parameters in the testing period by combining ?lters with standard forecasting methods. Among these adaptive models, the adaptive LR-GARCH model was proposed for the fi?rst time in the thesis. Third, with regard to noise distributions of the dependent variables in the forecasting models, we used either Gaussian or Student-t distributions. This thesis proposed a novel algorithm to infer parameters of Student-t noise models. The method is an extension of earlier work for models that are linear in parameters to the non-linear multilayer perceptron. Therefore, the proposed method broadens the range of models that can use a Student-t noise distribution. Because these techniques cannot stand alone, they must be combined with prediction models to improve their performance. We combined these techniques with some standard forecasting models: multilayer perceptron, radial basis functions, linear regression, and linear regression with GARCH. These techniques and forecasting models were applied to two datasets from the UK energy markets: daily electricity demand (which is stationary) and gas forward prices (non-stationary). The results showed that these techniques provided good improvement to prediction performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Project arose during a period in which the World was still coming to terms with the effects and implications of the so called 'energy crisis' of 1973/74. Serck Heat Transfer is a manufacturer of heat exchangers which transfer heat between fluids of various sorts. As such the company felt that past and possible future changes in the energy situation could have an impact upon the demand for its products. The thesis represents the first attempt to examine the impact of changes in the energy situation (a major economic variable) on the long term demand for heat exchangers. The scope of the work was limited to the United Kingdom, this being the largest single market for Serek's products. The thesis analyses industrial heat exchanger markets and identifies those trends which are related to both the changing energy situation and the usage of heat exchangers. These trends have been interpreted In terms of projected values of heat exchanger demand. The projections cover the period 197S to the year 2000. Also examined in the thesis is the future energy situation both internationally and nationally and it is found that in the long term there will be increasing pressure on consumers to conserve energy through rising real prices. The possibility of a connection between energy consumption and heat exchanger demand is investigated and no significant correlation found. This appears to be because there are a number of determinants of demand besides energy related factors and also there is a wide diversity of individual markets for heat exchangers. Conclusions are that in all markets, bar one, the changing energy situation should lead to a higher level of heat exchanger demand than would otherwise be the case had the energy situation not changed. It is also pointed out that it is misleading to look at changes in one influence on the demand for a product and ignore others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of the pyrolysis process to obtain valuable products from biomass is amongst the technologies being investigated as a source for renewable energy. The pyrolysis process yields products such as biochar, bio-oil and non condensable gases. The main objective of this project is to increase energy recovery from sewage sludge by utilising the intermediate pyrolysis process. The intermediate pyrolysis has a residence time ranging from 5 to 10 minutes. The main product yields from sewage sludge pyrolysis are 50 wt% biochar, 40 wt% bio-oil and 10 wt% non condensable gases. The project was carried out on a pilot plant scale reactor with a load capacity of 20 kg/h. This enabled a high yield of biochar and bio-oil. The characterisation of the products indicated that the organic phase of the bio-oil had good fuel properties such as having high energy content of 39 MJ/kg, low acid number of 21.5, high flash point of 150 and viscosity of 35 cSt. An increase in pyrolysis experiments enabled large quantities of pyrolysis oil production. Co-pyrolysis of sewage sludge was carried out on laboratory scale with mixed wood, rapeseed and straw. It found that there was an increase in bio-oil quantity with rapeseed while co-pyrolysis with wood helped to mask the smell of the sludge pyrolysis oil. Engine test were successfully carried out in an old Lister engine with pyrolysis oil fractions of 30% and 50% blended with biodiesel. This indicates that these pyrolysis oil fractions can be used in similar engine types without any problems however long term effects in ordinary engines are unknown. An economic evaluation was carried out about the implementation of the intermediate pyrolysis process for electricity production in a CHP using the pyrolysis oil. The prices of electricity per kWh were found to be very high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper details the development and evaluation of AstonTAC, an energy broker that successfully participated in the 2012 Power Trading Agent Competition (Power TAC). AstonTAC buys electrical energy from the wholesale market and sells it in the retail market. The main focus of the paper is on the broker’s bidding strategy in the wholesale market. In particular, it employs Markov Decision Processes (MDP) to purchase energy at low prices in a day-ahead power wholesale market, and keeps energy supply and demand balanced. Moreover, we explain how the agent uses Non-Homogeneous Hidden Markov Model (NHHMM) to forecast energy demand and price. An evaluation and analysis of the 2012 Power TAC finals show that AstonTAC is the only agent that can buy energy at low price in the wholesale market and keep energy imbalance low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tanulmány arra keresi a választ, hogy a megújuló alapú áramtermelők támogatása csökkentőleg hathat- e a villamos energia nagykereskedelmi és kiskereskedelmi árára. Ez utóbbi tartalmazza a megújulók támogatásának összegét is. Számos elméleti cikk rámutatott arra, hogy nemcsak a nagykereskedelmi árak, hanem a kiskereskedelmi villamosenergia-árak is csökkenhetnek a drágább, megújuló alapú áramtermelők támogatása révén. A tanulmány során egy villamosenergia-piacokat szimuláló modell segítségével modellezi a szerző, hogy a különböző mennyiségű szélerőművi és fotovoltaikus kapacitás támogatása hogyan hat a magyarországi nagykereskedelmi és kiskereskedelmi árakra. _____ Impact of the Hungarian renewable based power generation on electricity price The aim of this paper is to answer the question whether the support of renewable power generation could decrease the wholesale and retail electricity prices. The latter one includes the support of renewables. Several studies point out that not only the wholesale, but the retail electricity prices could decrease when supporting the more expensive, renewable power generation. A model, which simulates the electricity markets, is used in order to analyse the impact of different level of wind and photo voltaic power generator support fee on Hungarian wholesale and retail electricity prices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal aim of this paper is to examine the criteria assisting in the selection of biomass for energy generation in Brazil. To reach the aim, this paper adopts case study and survey research methods to collect information from four biomass energy case companies and solicits opinions from experts. The data gathered are analysed in line with a wide range of related data, including selection criteria for biomass and its importance, energy policies in Brazil, availability of biomass feedstock in Brazil and its characteristics, as well as status quo of biomass-based energy in Brazil. The findings of the paper demonstrate that there are ten main criteria in biomass selection for energy generation in Brazil. They comprise geographical conditions, availability of biomass feedstock, demand satisfaction, feedstock costs and oil prices, energy content of biomass feedstock, business and economic growth, CO2 emissions of biomass end-products, effects on soil, water and biodiversity, job creation and local community support, as well as conversion technologies. Furthermore, the research also found that these main criteria cannot be grouped on the basis of sustainability criteria, nor ranked by their importance as there is correlation between each criterion such as a cause and effect relationship, as well as some overlapping areas. Consequently, this means that when selecting biomass more comprehensive consideration is advisable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation consists of three chapters related to the low-price guarantee marketing strategy and energy efficiency analysis. The low-price guarantee is a marketing strategy in which firms promise to charge consumers the lowest price among their competitors. Chapter 1 addresses the research question "Does a Low-Price Guarantee Induce Lower Prices'' by looking into the retail gasoline industry in Quebec where there was a major branded firm which started a low-price guarantee back in 1996. Chapter 2 does a consumer welfare analysis of low-price guarantees to drive police indications and offers a new explanation of the firms' incentives to adopt a low-price guarantee. Chapter 3 develops the energy performance indicators (EPIs) to measure energy efficiency of the manufacturing plants in pulp, paper and paperboard industry.

Chapter 1 revisits the traditional view that a low-price guarantee results in higher prices by facilitating collusion. Using accurate market definitions and station-level data from the retail gasoline industry in Quebec, I conducted a descriptive analysis based on stations and price zones to compare the price and sales movement before and after the guarantee was adopted. I find that, contrary to the traditional view, the stores that offered the guarantee significantly decreased their prices and increased their sales. I also build a difference-in-difference model to quantify the decrease in posted price of the stores that offered the guarantee to be 0.7 cents per liter. While this change is significant, I do not find the response in comeptitors' prices to be significant. The sales of the stores that offered the guarantee increased significantly while the competitors' sales decreased significantly. However, the significance vanishes if I use the station clustered standard errors. Comparing my observations and the predictions of different theories of modeling low-price guarantees, I conclude the empirical evidence here supports that the low-price guarantee is a simple commitment device and induces lower prices.

Chapter 2 conducts a consumer welfare analysis of low-price guarantees to address the antitrust concerns and potential regulations from the government; explains the firms' potential incentives to adopt a low-price guarantee. Using station-level data from the retail gasoline industry in Quebec, I estimated consumers' demand of gasoline by a structural model with spatial competition incorporating the low-price guarantee as a commitment device, which allows firms to pre-commit to charge the lowest price among their competitors. The counterfactual analysis under the Bertrand competition setting shows that the stores that offered the guarantee attracted a lot more consumers and decreased their posted price by 0.6 cents per liter. Although the matching stores suffered a decrease in profits from gasoline sales, they are incentivized to adopt the low-price guarantee to attract more consumers to visit the store likely increasing profits at attached convenience stores. Firms have strong incentives to adopt a low-price guarantee on the product that their consumers are most price-sensitive about, while earning a profit from the products that are not covered in the guarantee. I estimate that consumers earn about 0.3% more surplus when the low-price guarantee is in place, which suggests that the authorities should not be concerned and regulate low-price guarantees. In Appendix B, I also propose an empirical model to look into how low-price guarantees would change consumer search behavior and whether consumer search plays an important role in estimating consumer surplus accurately.

Chapter 3, joint with Gale Boyd, describes work with the pulp, paper, and paperboard (PP&PB) industry to provide a plant-level indicator of energy efficiency for facilities that produce various types of paper products in the United States. Organizations that implement strategic energy management programs undertake a set of activities that, if carried out properly, have the potential to deliver sustained energy savings. Energy performance benchmarking is a key activity of strategic energy management and one way to enable companies to set energy efficiency targets for manufacturing facilities. The opportunity to assess plant energy performance through a comparison with similar plants in its industry is a highly desirable and strategic method of benchmarking for industrial energy managers. However, access to energy performance data for conducting industry benchmarking is usually unavailable to most industrial energy managers. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR program, seeks to overcome this barrier through the development of manufacturing sector-based plant energy performance indicators (EPIs) that encourage U.S. industries to use energy more efficiently. In the development of the energy performance indicator tools, consideration is given to the role that performance-based indicators play in motivating change; the steps necessary for indicator development, from interacting with an industry in securing adequate data for the indicator; and actual application and use of an indicator when complete. How indicators are employed in EPA’s efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The chapter describes the data and statistical methods used to construct the EPI for plants within selected segments of the pulp, paper, and paperboard industry: specifically pulp mills and integrated paper & paperboard mills. The individual equations are presented, as are the instructions for using those equations as implemented in an associated Microsoft Excel-based spreadsheet tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation studies capacity investments in energy sources, with a focus on renewable technologies, such as solar and wind energy. We develop analytical models to provide insights for policymakers and use real data from the state of Texas to corroborate our findings.

We first take a strategic perspective and focus on electricity pricing policies. Specifically, we investigate the capacity investments of a utility firm in renewable and conventional energy sources under flat and peak pricing policies. We consider generation patterns and intermittency of solar and wind energy in relation to the electricity demand throughout a day. We find that flat pricing leads to a higher investment level for solar energy and it can still lead to more investments in wind energy if considerable amount of wind energy is generated throughout the day.

In the second essay, we complement the first one by focusing on the problem of matching supply with demand in every operating period (e.g., every five minutes) from the perspective of a utility firm. We study the interaction between renewable and conventional sources with different levels of operational flexibility, i.e., the possibility

of quickly ramping energy output up or down. We show that operational flexibility determines these interactions: renewable and inflexible sources (e.g., nuclear energy) are substitutes, whereas renewable and flexible sources (e.g., natural gas) are complements.

In the final essay, rather than the capacity investments of the utility firms, we focus on the capacity investments of households in rooftop solar panels. We investigate whether or not these investments may cause a utility death spiral effect, which is a vicious circle of increased solar adoption and higher electricity prices. We observe that the current rate-of-return regulation may lead to a death spiral for utility firms. We show that one way to reverse the spiral effect is to allow the utility firms to maximize their profits by determining electricity prices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a general vision of cogeneration penetration in the European Union is shown; after this, a case study is included, evaluating as a function of two factors (electricity and emission allowance prices) the suitability of installing, for an industry with a determined thermal demand, two different options. The first one is a gas turbine cogeneration plant generating steam through a heat recovery steam generator (HRSG). The second one consists of installing a natural gas boiler for steam production covering the electricity demand from the grid. The CO2 emissions from both options are compared regarding different kinds of generation mixes from the electricity grid in the case of using the industrial boiler; taking into account the advantages of using biomass in relation to emissions, a last comparison has been carried out considering a biomass boiler instead of the natural gas boiler.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper develops a Dynamic Stochastic General Equilibrium (DSGE) model, which assesses the macroeconomic and labor market effects derived from simulating a positive shock to the stochastic component of the mining-energy sector productivity. Calibrating the model for the Colombian economy, this shock generates a whole increase in formal wages and a raise in tax revenues, expanding total consumption of the household members. These facts increase non-tradable goods prices relative to tradable goods prices, then real exchange rate decreases (appreciation) and occurs a displacement of productive resources from the tradable (manufacturing) sector to the non-tradable sector, followed by an increase in formal GDP and formal job gains. This situation makes the formal sector to absorb workers from the informal sector through the non-tradable formal subsector, which causes informal GDP to go down. As a consequence, in the net consumption falls for informal workers, which leads some members of the household not to offer their labor force in the informal sector but instead they prefer to keep unemployed. Therefore, the final result on the labor market is a decrease in the number of informal workers, of which a part are in the formal sector and the rest are unemployed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional $1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by $2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared to a mean improvement of 1.4 percent per year over 1997-2013. Historically, fuel price and demographic-driven market size changes have had large effects on technology adoption. Furthermore, fuel taxes would induce firms to adopt fuel-saving technologies on their most efficient cars, thereby polarizing the fuel efficiency distribution of the new vehicle fleet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let’s put ourselves in the shoes of an energy company. Our fleet of electricity production plants mainly includes gas, hydroelectric and waste-to-energy plants. We also sold contracts for the supply of gas and electricity. For each year we have to plan the trading of the volumes needed by the plants and customers: better to fix the price of these volumes in advance with the so-called forward contracts, instead of waiting for the delivery months, exposing ourselves to price uncertainty. Here’s the thing: trying to keep uncertainty under control in a market that has never shown such extreme scenarios as in recent years: a pandemic, a worsening climate crisis and a war that is affecting economies around the world have made the energy market more volatile than ever. How to make decisions in such uncertain contexts? There is an optimization problem: given a year, we need to choose the optimal planning of volume trading times, to meet the needs of our portfolio at the best prices, taking into account the liquidity constraints given by the market and the risk constraints imposed by the company. Algorithms are needed for the generation of market scenarios over a finite time horizon, that is, a probabilistic distribution that allows a view of all the dates between now and the end of the year of interest. Algorithms are needed to solve the optimization problem: we have proposed more than one and compared them; a very simple one, which avoids considering part of the complexity, moving on to a scenario approach and finally a reinforcement learning approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to present exact and heuristic algorithms for the integrated planning of multi-energy systems. The idea is to disaggregate the energy system, starting first with its core the Central Energy System, and then to proceed towards the Decentral part. Therefore, a mathematical model for the generation expansion operations to optimize the performance of a Central Energy System system is first proposed. To ensure that the proposed generation operations are compatible with the network, some extensions of the existing network are considered as well. All these decisions are evaluated both from an economic viewpoint and from an environmental perspective, as specific constraints related to greenhouse gases emissions are imposed in the formulation. Then, the thesis presents an optimization model for solar organic Rankine cycle in the context of transactive energy trading. In this study, the impact that this technology can have on the peer-to-peer trading application in renewable based community microgrids is inspected. Here the consumer becomes a prosumer and engages actively in virtual trading with other prosumers at the distribution system level. Moreover, there is an investigation of how different technological parameters of the solar Organic Rankine Cycle may affect the final solution. Finally, the thesis introduces a tactical optimization model for the maintenance operations’ scheduling phase of a Combined Heat and Power plant. Specifically, two types of cleaning operations are considered, i.e., online cleaning and offline cleaning. Furthermore, a piecewise linear representation of the electric efficiency variation curve is included. Given the challenge of solving the tactical management model, a heuristic algorithm is proposed. The heuristic works by solving the daily operational production scheduling problem, based on the final consumer’s demand and on the electricity prices. The aggregate information from the operational problem is used to derive maintenance decisions at a tactical level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.