796 resultados para Energy Expenditure
Resumo:
Does exercise promote weight loss? One of the key problems with studies assessing the efficacy of exercise as a method of weight management and obesityis that mean data are presented and the individual variability in response is overlooked. Recent data have highlighted the need to demonstrate and characterise the individual variability in response to exercise. Do people who exercise compensate for the increase in energy expenditure via compensatory increases in hunger and food intake? The authors address the physiological, psychological and behavioural factors potentially involved in the relationship between exercise and appetite, and identify the research questions that remain unanswered. A negative consequence of the phenomena of individual variability and compensatory responses has been the focus on those who lose little weight in response to exercise; this has been used unreasonably as evidence to suggest that exercise is a futile method of controlling weight and managing obesity. Most of the evidence suggests that exercise is useful for improving body composition and health. For example, when exercise-induced mean weight loss is <1.0 kg, significant improvements in aerobic capacity (+6.3 ml/kg/min), systolic (−6.00 mm Hg) and diastolic (−3.9 mm Hg) blood pressure, waist circumference (−3.7 cm) and positive mood still occur. However, people will vary in their responses to exercise; understanding and characterising this variability will help tailor weight loss strategies to suit individuals.
Resumo:
Background: National physical activity data suggest that there is a considerable difference in physical activity levels of US and Australian adults. Although different surveys (Active Australia and BRFSS) are used, the questions are similar. Different protocols, however, are used to estimate “activity” from the data collected. The primary aim of this study was to assess whether the 2 approaches to the management of PA data could explain some of the difference in prevalence estimates derived from the two national surveys. Methods: Secondary data analysis of the most recent AA survey (N = 2987). Results: 15% of the sample was defined as “active” using Australian criteria but as “inactive” using the BRFSS protocol, even though weekly energy expenditure was commensurate with meeting current guidelines. Younger respondents (age < 45 y) were more likely to be “misclassified” using the BRFSS criteria. Conclusions: The prevalence of activity in Australia and the US appears to be more similar than we had previously thought.
Resumo:
Alterations in cognitive function are characteristic of the aging process in humans and other animals. However, the nature of these age related changes in cognition is complex and is likely to be influenced by interactions between genetic predispositions and environmental factors resulting in dynamic fluctuations within and between individuals. These inter and intra-individual fluctuations are evident in both so-called normal cognitive aging and at the onset of cognitive pathology. Mild Cognitive Impairment (MCI), thought to be a prodromal phase of dementia, represents perhaps the final opportunity to mitigate cognitive declines that may lead to terminal conditions such as dementia. The prognosis for people with MCI is mixed with the evidence suggesting that many will remain stable within 10-years of diagnosis, many will improve, and many will transition to dementia. If the characteristics of people who do not progress to dementia from MCI can be identified and replicated in others it may be possible to reduce or delay dementia onset, thus reducing a growing personal and public health burden. Furthermore, if MCI onset can be prevented or delayed, the burden of cognitive decline in aging populations worldwide may be reduced. A cognitive domain that is sensitive to the effects of advancing age, and declines in which have been shown to presage the onset of dementia in MCI patients, is executive function. Moreover, environmental factors such as diet and physical activity have been shown to affect performance on tests of executive function. For example, improvements in executive function have been demonstrated as a result of increased aerobic and anaerobic physical activity and, although the evidence is not as strong, findings from dietary interventions suggest certain nutrients may preserve or improve executive functions in old age. These encouraging findings have been demonstrated in older adults with MCI and their non-impaired peers. However, there are some gaps in the literature that need to be addressed. For example, little is known about the effect on cognition of an interaction between diet and physical activity. Both are important contributors to health and wellbeing, and a growing body of evidence attests to their importance in mental and cognitive health in aging individuals. Yet physical activity and diet are rarely considered together in the context of cognitive function. There is also little known about potential underlying biological mechanisms that might explain the physical activity/diet/cognition relationship. The first aim of this program of research was to examine the individual and interactive role of physical activity and diet, specifically long chain polyunsaturated fatty acid consumption(LCn3) as predictors of MCI status. The second aim is to examine executive function in MCI in the context of the individual and interactive effects of physical activity and LCn3.. A third aim was to explore the role of immune and endocrine system biomarkers as possible mediators in the relationship between LCn3, physical activity and cognition. Study 1a was a cross-sectional analysis of MCI status as a function of erythrocyte proportions of an interaction between physical activity and LCn3. The marine based LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both received support in the literature as having cognitive benefits, although comparisons of the relative benefits of EPA or DHA, particularly in relation to the aetiology of MCI, are rare. Furthermore, a limited amount of research has examined the cognitive benefits of physical activity in terms of MCI onset. No studies have examined the potential interactive benefits of physical activity and either EPA or DHA. Eighty-four male and female adults aged 65 to 87 years, 50 with MCI and 34 without, participated in Study 1a. A logistic binary regression was conducted with MCI status as a dependent variable, and the individual and interactive relationships between physical activity and either EPA or DHA as predictors. Physical activity was measured using a questionnaire and specific physical activity categories were weighted according to the metabolic equivalents (METs) of each activity to create a physical activity intensity index (PAI). A significant relationship was identified between MCI outcome and the interaction between the PAI and EPA; participants with a higher PAI and higher erythrocyte proportions of EPA were more likely to be classified as non-MCI than their less active peers with less EPA. Study 1b was a randomised control trial using the participants from Study 1a who were identified with MCI. Given the importance of executive function as a determinant of progression to more severe forms of cognitive impairment and dementia, Study 1b aimed to examine the individual and interactive effect of physical activity and supplementation with either EPA or DHA on executive function in a sample of older adults with MCI. Fifty male and female participants were randomly allocated to supplementation groups to receive 6-months of supplementation with EPA, or DHA, or linoleic acid (LA), a long chain polyunsaturated omega-6 fatty acid not known for its cognitive enhancing properties. Physical activity was measured using the PAI from Study 1a at baseline and follow-up. Executive function was measured using five tests thought to measure different executive function domains. Erythrocyte proportions of EPA and DHA were higher at follow-up; however, PAI was not significantly different. There was also a significant improvement in three of the five executive function tests at follow-up. However, regression analyses revealed that none of the variance in executive function at follow-up was predicted by EPA, DHA, PAI, the EPA by PAI interaction, or the DHA by PAI interaction. The absence of an effect may be due to a small sample resulting in limited power to find an effect, the lack of change in physical activity over time in terms of volume and/or intensity, or a combination of both reduced power and no change in physical activity. Study 2a was a cross-sectional study using cognitively unimpaired older adults to examine the individual and interactive effects of LCn3 and PAI on executive function. Several possible explanations for the absence of an effect were identified. From this consideration of alternative explanations it was hypothesised that post-onset interventions with LCn3 either alone or in interation with self-reported physical activity may not be beneficial in MCI. Thus executive function responses to the individual and interactive effects of physical activity and LCn3 were examined in a sample of older male and female adults without cognitive impairment (n = 50). A further aim of study 2a was to operationalise executive function using principal components analysis (PCA) of several executive function tests. This approach was used firstly as a data reduction technique to overcome the task impurity problem, and secondly to examine the executive function structure of the sample for evidence of de-differentiation. Two executive function components were identified as a result of the PCA (EF 1 and EF 2). However, EPA, DHA, the PAI, or the EPA by PAI or DHA by PAI interactions did not account for any variance in the executive function components in subsequent hierarchical multiple regressions. Study 2b was an exploratory correlational study designed to explore the possibility that immune and endocrine system biomarkers may act as mediators of the relationship between LCn3, PAI, the interaction between LCn3 and PAI, and executive functions. Insulin-like growth factor-1 (IGF-1), an endocrine system growth hormone, and interleukin-6 (IL-6) an immune system cytokine involved in the acute inflammatory response, have both been shown to affect cognition including executive functions. Moreover, IGF-1 and IL-6 have been shown to be antithetical in so far as chronically increased IL-6 has been associated with reduced IGF-1 levels, a relationship that has been linked to age related morbidity. Further, physical activity and LCn3 have been shown to modulate levels of both IGF-1 and IL-6. Thus, it is possible that the cognitive enhancing effects of LCn3, physical activity or their interaction are mediated by changes in the balance between IL-6 and IGF-1. Partial and non-parametric correlations were conducted in a subsample of participants from Study 2a (n = 13) to explore these relationships. Correlations of interest did not reach significance; however, the coefficients were quite large for several relationships suggesting studies with larger samples may be warranted. In summary, the current program of research found some evidence supporting an interaction between EPA, not DHA, and higher energy expenditure via physical activity in differentiating between older adults with and without MCI. However, a RCT examining executive function in older adults with MCI found no support for increasing EPA or DHA while maintaining current levels of energy expenditure. Furthermore, a cross-sectional study examining executive function in older adults without MCI found no support for better executive function performance as a function of increased EPA or DHA consumption, greater energy expenditure via physical activity or an interaction between physical activity and either EPA or DHA. Finally, an examination of endocrine and immune system biomarkers revealed promising relationships in terms of executive function in non-MCI older adults particularly with respect to LCn3 and physical activity. Taken together, these findings demonstrate a potential benefit of increasing physical activity and LCn3 consumption, particularly EPA, in mitigating the risk of developing MCI. In contrast, no support was found for a benefit to executive function as a result of increased physical activity, LCn3 consumption or an interaction between physical activity and LCn3, in participants with and without MCI. These results are discussed with reference to previous findings in the literature including possible limitations and opportunities for future research.
Resumo:
The increasing prevalence of obesity in society has been associated with a number of atherogenic risk factors such as insulin resistance. Aerobic training is often recommended as a strategy to induce weight loss, with a greater impact of high-intensity levels on cardiovascular function and insulin sensitivity, and a greater impact of moderate-intensity levels on fat oxidation. Anaerobic high-intensity (supramaximal) interval training has been advocated to improve cardiovascular function, insulin sensitivity and fat oxidation. However, obese individuals tend to have a lower tolerance of high-intensity exercise due to discomfort. Furthermore, some obese individuals may compensate for the increased energy expenditure by eating more and/or becoming less active. Recently, both moderate- and high-intensity aerobic interval training have been advocated as alternative approaches. However, it is still uncertain as to which approach is more effective in terms of increasing fat oxidation given the issues with levels of fitness and motivation, and compensatory behaviours. Accordingly, the objectives of this thesis were to compare the influence of moderate- and high-intensity interval training on fat oxidation and eating behaviour in overweight/obese men. Two exercise interventions were undertaken by 10-12 overweight/obese men to compare their responses to study variables, including fat oxidation and eating behaviour during moderate- and high-intensity interval training (MIIT and HIIT). The acute training intervention was a methodological study designed to examine the validity of using exercise intensity from the graded exercise test (GXT) - which measured the intensity that elicits maximal fat oxidation (FATmax) - to prescribe interval training during 30-min MIIT. The 30-min MIIT session involved 5-min repetitions of workloads 20% below and 20% above the FATmax. The acute intervention was extended to involve HIIT in a cross-over design to compare the influence of MIIT and HIIT on eating behaviour using subjective appetite sensation and food preference through the liking and wanting test. The HIIT consisted of 15-sec interval training at 85 %VO2peak interspersed by 15-sec unloaded recovery, with a total mechanical work equal to MIIT. The medium term training intervention was a cross-over 4-week (12 sessions) MIIT and HIIT exercise training with a 6-week detraining washout period. The MIIT sessions consisted of 5-min cycling stages at ±20% of mechanical work at 45 %VO2peak, and the HIIT sessions consisted of repetitive 30-sec work at 90 %VO2peak and 30-sec interval rests, during identical exercise sessions of between 30 and 45 mins. Assessments included a constant-load test (45 %VO2peak for 45 mins) followed by 60-min recovery at baseline and the end of 4-week training, to determine fat oxidation rate. Participants’ responses to exercise were measured using blood lactate (BLa), heart rate (HR) and rating of perceived exertion (RPE) and were measured during the constant-load test and in the first intervention training session of every week during training. Eating behaviour responses were assessed by measuring subjective appetite sensations, liking and wanting and ad libitum energy intake. Results of the acute intervention showed that FATmax is a valid method to estimate VO2 and BLa, but is not valid to estimate HR and RPE in the MIIT session. While the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax (0.16 ±0.09 and 0.14 ±0.08 g/min, respectively), fat oxidation was significantly higher at minute 25 of MIIT (P≤0.01). In addition, there was no significant difference between MIIT and HIIT in the rate of appetite sensations after exercise, but there was a tendency towards a lower rate of hunger after HIIT. Different intensities of interval exercise also did not affect explicit liking or implicit wanting. Results of the medium-term intervention indicated that current interval training levels did not affect body composition, fasting insulin and fasting glucose. Maximal aerobic capacity significantly increased (P≤0.01) (2.8 and 7.0% after MIIT and HIIT respectively) during GXT, and fat oxidation significantly increased (P≤0.01) (96 and 43% after MIIT and HIIT respectively) during the acute constant-load exercise test. RPE significantly decreased after HIIT greater than MIIT (P≤0.05), and the decrease in BLa was greater during the constant-load test after HIIT than MIIT, but this difference did not reach statistical significance (P=0.09). In addition, following constant-load exercise, exercise-induced hunger and desire to eat decreased after HIIT greater than MIIT but were not significant (p value for desire to eat was 0.07). Exercise-induced liking of high-fat sweet (HFSW) and high-fat non-sweet (HFNS) foods increased after MIIT and decreased after HIIT (p value for HFNS was 0.09). The intervention explained 12.4% of the change in fat intake (p = 0.07). This research is significant in that it confirmed two points in the acute study. While the rate of fat oxidation increased during MIIT, the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax. In addition, manipulating the intensity of acute interval exercise did not affect appetite sensations and liking and wanting. In the medium-term intervention, constant-load exercise-induced fat oxidation significantly increased after interval training, independent of exercise intensity. In addition, desire to eat, explicit liking for HFNS and fat intake collectively confirmed that MIIT is accompanied by a greater compensation of eating behaviour than HIIT. Findings from this research will assist in developing exercise strategies to provide obese men with various training options. In addition, the finding that overweight/obese men expressed a lower RPE and decreased BLa after HIIT compared with MIIT is contrary to the view that obese individuals may not tolerate high-intensity interval training. Therefore, high-intensity interval training can be advocated among the obese adult male population. Future studies may extend this work by using a longer-term intervention.
Resumo:
Meal-Induced Thermogenesis (MIT) research findings are highly inconsistent, in part, due to the variety of durations and protocols used to measure MIT. We aimed to determine: 1) the proportion of a 6 h MIT response completed at 3, 4 and 5 h; 2) the associations between the shorter durations and the 6 h measure; 3) whether shorter durations improved the reproducibility of the measurement. MIT was measured in response to a 2410 KJ mixed composition meal in ten individuals (5 male, 5 female) on two occasions. Energy expenditure was measured continuously for 6 h post-meal using indirect calorimetry and MIT was calculated as the increase in energy expenditure above the pre-meal RMR. On average, 76%, 89%, and 96% of the 6 h MIT response was completed within 3, 4 and 5 h respectively, and the MIT at each of these time points was strongly correlated to the 6 h MIT (range for correlations, r = 0.990 to 0.998; p < 0.01). The between-day CV for the 6 h measurement was 33%, but was significantly lower after 3 h of measurement (CV = 26%, p = 0.02). Despite variability in the total MIT between days, the proportion of the MIT that was complete at 3, 4 and 5 h was reproducible (mean CV: 5%). While 6 h is typically required to measure the complete MIT response, 3 h measures provide sufficient information about the magnitude of the MIT response and may be applicable for measuring individuals on repeated occasions.
Resumo:
In many interventions that are based on an exercise program intended to induce weight loss, the mean weight loss observed is modest and sometimes far less than what the individual expected. The individual responses are also widely variable, with some individuals losing a substantial amount of weight, others maintaining weight, and a few actually gaining weight. The media have focused on the subpopulation that loses little weight, contributing to a public perception that exercise has limited utility to cause weight loss. The purpose of the symposium was to present recent, novel data that help explain how compensatory behaviors contribute to a wide discrepancy in exercise-induced weight loss. The presentations provide evidence that some individuals adopt compensatory behaviors, that is, increased energy intake and/or reduced activity, that offset the exercise energy expenditure and limit weight loss. The challenge for both scientists and clinicians is to develop effective tools to identify which individuals are susceptible to such behaviors and to develop strategies to minimize their effect.
Resumo:
It is often reported that females lose less body weight than males do in response to exercise. These differences are suggested to be a result of females exhibiting a stronger defense of body fat and a greater compensatory appetite response to exercise than males do. Purpose This study aimed to compare the effect of a 12-wk supervised exercise program on body weight, body composition, appetite, and energy intake in males and females. Methods A total of 107 overweight and obese adults (males = 35, premenopausal females = 72, BMI = 31.4 ± 4.2 kg·m−2, age = 40.9 ± 9.2 yr) completed a supervised 12-wk exercise program expending approximately 10.5 MJ·wk−1 at 70% HRmax. Body composition, energy intake, appetite ratings, RMR, and cardiovascular fitness were measured at weeks 0 and 12. Results The 12-wk exercise program led to significant reductions in body mass (males [M] = −3.03 ± 3.4 kg and females [F] = −2.28 ± 3.1 kg), fat mass (M = −3.14 ± 3.7 kg and F = −3.01 ± 3.0 kg), and percent body fat (M = −2.45% ± 3.3% and F = −2.45% ± 2.2%; all P < 0.0001), but there were no sex-based differences (P > 0.05). There were no significant changes in daily energy intake in males or females after the exercise intervention compared with baseline (M = 199.2 ± 2418.1 kJ and F = −131.6 ± 1912.0 kJ, P > 0.05). Fasting hunger levels significantly increased after the intervention compared with baseline values (M = 11.0 ± 21.1 min and F = 14.0 ± 22.9 mm, P < 0.0001), but there were no differences between males and females (P > 0.05). The exercise also improved satiety responses to an individualized fixed-energy breakfast (P < 0.0001). This was comparable in males and females. Conclusions Males and premenopausal females did not differ in their response to a 12-wk exercise intervention and achieved similar reductions in body fat. When exercise interventions are supervised and energy expenditure is controlled, there are no sex-based differences in the measured compensatory response to exercise.
Resumo:
Access to dietetic care is important in chronic disease management and innovative technologies assists in this purpose. Photographic dietary records (PhDR) using mobile phones or cameras are valid and convenient for patients. Innovations in providing dietary interventions via telephone and computer can also inform dietetic practice. Three studies are presented. A mobile phone method was validated by comparing energy intake (EI) to a weighed food record and a measure of energy expenditure (EE) obtained using the doubly labelled water technique in 10 adults with T2 diabetes. The level of agreement between mean (±sd) energy intake mobile phone (8.2±1.7 MJ) and weighed record (8.5±1.6 MJ) was high (p=0.392), however EI/EE for both methods gave similar levels of under-reporting (0.69 and 0.72). All subjects preferred using the mobile phone vs. weighed record. Nineteen individuals with Parkinsons disease kept 3-day PhDRs on three occasions using point-and-shoot digital cameras over a 12 week period. The camera was rated as easy to use by 89%, keeping a PhDR was considered acceptable by 94% and none would rather use a “pen and paper” method. Eighty-three percent felt confident to use the camera again to record intake. An interactive, automated telephone system designed to coach people with T2 diabetes to adopt and maintain diabetes self-care behaviours, including nutrition, showed trends for improvements in total fat, saturated fat and vegetable intake of the intervention group compared to control participants over 6 months. Innovative technologies are acceptable to patients with chronic conditions and can be incorporated into dietetic care.
Resumo:
This paper describes a novel optimum path planning strategy for long duration AUV operations in environments with time-varying ocean currents. These currents can exceed the maximum achievable speed of the AUV, as well as temporally expose obstacles. In contrast to most other path planning strategies, paths have to be defined in time as well as space. The solution described here exploits ocean currents to achieve mission goals with minimal energy expenditure, or a tradeoff between mission time and required energy. The proposed algorithm uses a parallel swarm search as a means to reduce the susceptibility to large local minima on the complex cost surface. The performance of the optimisation algorithms is evaluated in simulation and experimentally with the Starbug AUV using a validated ocean model of Brisbane’s Moreton Bay.
Resumo:
Purpose The purpose of this review is to address important methodological issues related to conducting accelerometer-based assessments of physical activity in free-living individuals. Methods We review the extant scientific literature for empirical information related to the following issues: product selection, number of accelerometers needed, placement of accelerometers, epoch length, and days of monitoring required to estimate habitual physical activity. We also discuss the various options related to distributing and collecting monitors and strategies to enhance compliance with the monitoring protocol. Results No definitive evidence exists currently to indicate that one make and model of accelerometer is more valid and reliable than another. Selection of accelerometer therefore remains primarily an issue of practicality, technical support, and comparability with other studies. Studies employing multiple accelerometers to estimate energy expenditure report only marginal improvements in explanatory power. Accelerometers are best placed on hip or the lower back. Although the issue of epoch length has not been studied in adults, the use of count cut points based on 1-min time intervals maybe inappropriate in children and may result in underestimation of physical activity. Among adults, 3–5 d of monitoring is required to reliably estimate habitual physical activity. Among children and adolescents, the number of monitoring days required ranges from 4 to 9 d, making it difficult to draw a definitive conclusion for this population. Face-to-face distribution and collection of accelerometers is probably the best option in field-based research, but delivery and return by express carrier or registered mail is a viable option. Conclusion Accelerometer-based activity assessments requires careful planning and the use of appropriate strategies to increase compliance.
Resumo:
With measurement of physical activity becoming more common in clinical practice, it is imperative that healthcare professionals become more knowledgeable about the different methods available to objectively measure physical activity behaviour. Objective measures do not rely on information provided by the patient, but instead measure and record the biomechanical or physiological consequences of performing physical activity, often in real time. As such, objective measures are not subject to the reporting bias or recall problems associated with self-report methods. The purpose of this article was to provide an overview of the different methods used to objectively measure physical activity in clinical practice. The review was delimited to heart rate monitoring, accelerometers and pedometers since their small size, low participant burden and relatively low cost make these objective measures appropriate for use in clinical practice settings. For each measure, strengths and weakness were discussed; and whenever possible, literature-based examples of implementation were provided.
Resumo:
OBJECTIVES: To compare the classification accuracy of previously published RT3 accelerometer cut-points for youth using energy expenditure, measured via portable indirect calorimetry, as a criterion measure. DESIGN: Cross-sectional cross-validation study. METHODS: 100 children (mean age 11.2±2.8 years, 61% male) completed 12 standardized activities trials (3 sedentary, 5 lifestyle and 4 ambulatory) while wearing an RT3 accelerometer. V˙O2 was measured concurrently using the Oxycon Mobile portable calorimeter. Cut-points by Vanhelst (VH), Rowlands (RW), Chu (CH), Kavouras (KV) and the RT3 manufacturer (RT3M) were used to classify PA intensity as sedentary (SED), light (LPA), moderate (MPA) or vigorous (VPA). Classification accuracy was evaluated using the area under the Receiver Operating Characteristic curve (ROC-AUC) and weighted Kappa (κ). RESULTS: For moderate-to-vigorous PA (MVPA), VH, KV and RW exhibited excellent accuracy classification (ROC-AUC≥0.90), while the CH and RT3M exhibited good classification accuracy (ROC-AUC>0.80). Classification accuracy for LPA was fair to poor (ROC-AUC<0.76). For SED, VH exhibited excellent classification accuracy (ROC-AUC>0.90), while RW, CH, and RT3M exhibited good classification accuracy (ROC-AUC>0.80). Kappa statistics ranged from 0.67 (VH) to 0.55 (CH). CONCLUSIONS: All cut-points provided acceptable classification accuracy for SED and MVPA, but limited accuracy for LPA. On the basis of classification accuracy over all four levels of intensity, the use of the VH cut-points is recommended.
Resumo:
Background Accelerometers have become one of the most common methods of measuring physical activity (PA). Thus, validity of accelerometer data reduction approaches remains an important research area. Yet, few studies directly compare data reduction approaches and other PA measures in free-living samples. Objective To compare PA estimates provided by 3 accelerometer data reduction approaches, steps, and 2 self-reported estimates: Crouter's 2-regression model, Crouter's refined 2-regression model, the weighted cut-point method adopted in the National Health and Nutrition Examination Survey (NHANES; 2003-2004 and 2005-2006 cycles), steps, IPAQ, and 7-day PA recall. Methods A worksite sample (N = 87) completed online-surveys and wore ActiGraph GT1M accelerometers and pedometers (SW-200) during waking hours for 7 consecutive days. Daily time spent in sedentary, light, moderate, and vigorous intensity activity and percentage of participants meeting PA recommendations were calculated and compared. Results Crouter's 2-regression (161.8 +/- 52.3 minutes/day) and refined 2-regression (137.6 +/- 40.3 minutes/day) models provided significantly higher estimates of moderate and vigorous PA and proportions of those meeting PA recommendations (91% and 92%, respectively) as compared with the NHANES weighted cut-point method (39.5 +/- 20.2 minutes/day, 18%). Differences between other measures were also significant. Conclusions When comparing 3 accelerometer cut-point methods, steps, and self-report measures, estimates of PA participation vary substantially.
Resumo:
Background Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Best Practices Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). Future Directions New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.
Resumo:
Purpose Most studies that use either a single exercise session, exercise training, or a cross-sectional design have failed to find a relationship between exercise and plasma lipoprotein(a) [Lp(a)] concentrations. However, a few studies investigating the effects of longer and/or more strenuous exercise have shown elevated Lp(a) concentrations, possibly as an acute-phase reactant to muscle damage. Based on the assumption that greater muscle damage would occur with exercise of longer duration, the purpose of the present study was to determine whether exercise of longer duration would increase Lp(a) concentration and creatine kinase. (CK) activity more than exercise of shorter duration. Methods Ten endurance-trained men (mean +/- SD: age, 27 +/- 6 yr; maximal oxygen consumption [(V)over dotO(2max)], 57 +/- 7 mL(.)kg(-1) min(-1)) completed two separate exercise sessions at 70% (V)over dotO(2max). One session required 900 kcal of energy expenditure (60 +/- 6 min), and the other required 1500 kcal (112 +/- 12 min). Fasted blood samples were taken immediately before (0-pre), immediately after (0-post), 1 d after (1-post), and 2 d after (2-post) each exercise session. Results CK activity increased after both exercise sessions (mean +/- SE; 800 kcal: 0-pre 55 +/- 11, 1-post 168 +/- 64 U(.)L(-1.)min(-1); 1500 kcal: 0-pre 51 +/- 5, 1-post 187 +/- 30, 2-post 123 +/- 19 U(.)L(-1.)min(-1); P < 0.05). However, median Lp(a) concentrations were not altered by either exercise session (800 kcal: 0-pre 5.0 mg(.)dL(-1), 0-post 3.2 mg(.)dL(-1), 1-post 4.0 mg(.)dL(-1), 2-post 3.4 mg(.)dL(-1); 1500 kcal: 0-pre 5.8 mg(.)dL(-1), 0-post 4.3 mg(.)dL(-1), 1-post 3.2 mg(.)dL(-1), 2-post 5.3 mg(.)dL(-1)). In addition, no relationship existed between exercise-induced changes in CK activity and Lp(a) concentration (800 kcal: r = -0.26; 1500 kcal: r = -0.02). Conclusion These results suggest that plasma Lp(a) concentration will not increase in response to minor exercise-induced muscle damage in endurance-trained runners.