867 resultados para Embedded devices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comunication in Internationa Conference with Peer Review First International Congress on Cardiovasular Technologies - CARDIOTECHNIX, Vilamoura, Portugal, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação apresenta o trabalho realizado no âmbito da unidade curricular de Tese / Dissertação (TEDI) do Mestrado em Engenharia Eletrotécnica e de Computadores – Especialização em Automação e Sistemas em parceria com a empresa Live Simply, uma empresa de domótica que decidiu apostar na inovação e no desenvolvimento de serviços e produtos de valor acrescentado para consolidar a sua posição no mercado. Neste contexto, foram identificadas como mais-valias para a Live Simply a conceção, por um lado, de uma ferramenta de apoio técnico de integração e simplificação das fases de projeto, configuração e gestão de instalações domóticas e, por outro lado, de uma interface com a instalação para o cliente consultar e alterar, em tempo real, o estado dos atuadores. Depois de analisadas as tecnologias disponíveis, selecionaram-se as soluções a adotar (linguagens de programação, servidores de base de dados e ambientes de desenvolvimento), definiu-se a arquitetura do sistema, detalhando-se os módulos de projeto, configuração e gestão de instalações, a estrutura da base de dados assim como o hardware de controlo da instalação. De seguida, procedeu-se ao desenvolvimento dos módulos de software e à configuração e programação do módulo de hardware. Por último, procedeu-se a um conjunto exaustivo de testes aos diferentes módulos que demonstraram o correto funcionamento da ferramenta e a adequação das tecnologias empregues. A ferramenta de apoio técnico realizada integra as fases do projeto, configuração e gestão de instalações domóticas, permitindo melhorar o desempenho dos técnicos e a resposta aos clientes. A interface oferecida ao dono da instalação é uma interface Web de aspeto amigável e fácil utilização que permite consultar e modificar em tempo real o estado da instalação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many-core platforms based on Network-on-Chip (NoC [Benini and De Micheli 2002]) present an emerging technology in the real-time embedded domain. Although the idea to group the applications previously executed on separated single-core devices, and accommodate them on an individual many-core chip offers various options for power savings, cost reductions and contributes to the overall system flexibility, its implementation is a non-trivial task. In this paper we address the issue of application mapping onto a NoCbased many-core platform when considering fundamentals and trends of current many-core operating systems, specifically, we elaborate on a limited migrative application model encompassing a message-passing paradigm as a communication primitive. As the main contribution, we formulate the problem of real-time application mapping, and propose a three-stage process to efficiently solve it. Through analysis it is assured that derived solutions guarantee the fulfilment of posed time constraints regarding worst-case communication latencies, and at the same time provide an environment to perform load balancing for e.g. thermal, energy, fault tolerance or performance reasons.We also propose several constraints regarding the topological structure of the application mapping, as well as the inter- and intra-application communication patterns, which efficiently solve the issues of pessimism and/or intractability when performing the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerodynamic drag is known to be one of the factors contributing more to increased aircraft fuel consumption. The primary source of skin friction drag during flight is the boundary layer separation. This is the layer of air moving smoothly in the immediate vicinity of the aircraft. In this paper we discuss a cyber-physical system approach able of performing an efficient suppression of the turbulent flow by using a dense sensing deployment to detect the low pressure region and a similarly dense deployment of actuators to manage the turbulent flow. With this concept, only the actuators in the vicinity of a separation layer are activated, minimizing power consumption and also the induced drag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time embedded applications require to process large amounts of data within small time windows. Parallelize and distribute workloads adaptively is suitable solution for computational demanding applications. The purpose of the Parallel Real-Time Framework for distributed adaptive embedded systems is to guarantee local and distributed processing of real-time applications. This work identifies some promising research directions for parallel/distributed real-time embedded applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the steady increase in experimental deployments, most of research work on WSNs has focused only on communication protocols and algorithms, with a clear lack of effective, feasible and usable system architectures, integrated in a modular platform able to address both functional and non–functional requirements. In this paper, we outline EMMON [1], a full WSN-based system architecture for large–scale, dense and real–time embedded monitoring [3] applications. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. Then, EM-Set, the EMMON engineering toolset will be presented. EM-Set includes a network deployment planning, worst–case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset was crucial for the development of EMMON which was designed to use standard commercially available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. Finally, the EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ nodes testbed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power saving mechanisms, inter alia to enhance battery life. While I/O device scheduling has been studied in the past for realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are crafted considering a very large overhead of device transitions. Technology enhancements have allowed the hardware vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling algorithm for real time systems that allows to shut-down devices while ensuring system schedulability. Our results show an energy gain of up to 90% when compared to the techniques proposed in the state-of-the-art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts between update transactions that prevents starvation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system's performance. The paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The results show that the proposed heuristics achieve a reasonably higher system's availability than static offline decisions when lower replication ratios are imposed due to resource or cost limitations. The paper introduces a novel approach to coordinate the activation of passive replicas in interdependent distributed environments. The proposed distributed coordination model reduces the complexity of the needed interactions among nodes and is faster to converge to a globally acceptable solution than a traditional centralised approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the Internet was born, the purpose was to interconnect computers to share digital data at large-scale. On the other hand, when embedded systems were born, the objective was to control system components under real-time constraints through sensing devices, typically at small to medium scales. With the great evolution of the Information and Communication Technology (ICT), the tendency is to enable ubiquitous and pervasive computing to control everything (physical processes and physical objects) anytime and at a large-scale. This new vision gave recently rise to the paradigm of Cyber-Physical Systems (CPS). In this position paper, we provide a realistic vision to the concept of the Cyber-Physical Internet (CPI), discuss its design requirements and present the limitations of the current networking abstractions to fulfill these requirements. We also debate whether it is more productive to adopt a system integration approach or a radical design approach for building large-scale CPS. Finally, we present a sample of realtime challenges that must be considered in the design of the Cyber-Physical Internet.