978 resultados para Electron donor-acceptor interactions
Resumo:
Trabalho Final de Mestrado para obtenção do Grau de Mestre em Engenharia Química e Biológica
Resumo:
The benzoyl hydrazone based dimeric dicopper(II) complex [Cu2(R)(CH3O)(NO3)]2(CH3O)2 (R-Cu2+), recently reported by us, catalyzes the aerobic oxidation of catechols (catechol (S1), 3,5- itertiarybutylcatechol (S2) and 3-nitrocatechol (S3)) to the corresponding quinones (catecholase like activity), as shown by UV–Vis absorption spectroscopy in methanol/HEPES buffer (pH 8.2) medium at 25 C. The highest activity is observed for the substituted catechol (S2) with the electron donor tertiary butyl group, resulting in a turnover frequency (TOF) value of 1.13 103 h1. The complex R-Cu2+ also exhibits a good catalytic activity in the oxidation (without added solvent) of 1-phenylethanol to acetophenone by But OOH under low power (10 W) microwave (MW) irradiation. 2014 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to verify the possibility to use a polarized graphite electrode as an electron donor for the reductive dechlorination of 1,2-dichloroethane, an ubiquitous groundwater contaminant. The rate of 1,2-DCA dechlorination almost linearly increased by decreasing the set cathode potential over a broad range of set cathode potentials (i.e., from −300 mV to −900 mV vs. the standard hydrogen electrode). This process was primarily dependent on electrolytic H2 generation. On the other hand, reductive dechlorination proceeded (although quite slowly) with a very high Coulombic efficiency (near 70%) at a set cathode potential of −300 mV, where no H2 production occurred. Under this condition, reductive dechlorination was likely driven by direct electron uptake from the surface of the polarized electrode. Taken as a whole, this study further extends the range of chlorinated contaminants which can be treated with bioelectrochemical systems.
Resumo:
J Biol Inorg Chem (2011) 16:443–460 DOI 10.1007/s00775-010-0741-z
Resumo:
J Biol Inorg Chem (2010) 15:967–976 DOI 10.1007/s00775-010-0658-6
Resumo:
J Biol Inorg Chem. 2008 Jun;13(5):737-53. doi: 10.1007/s00775-008-0359-6
Resumo:
Dissertação de mestrado em Química Medicinal
Resumo:
Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.
Resumo:
We investigated the impact of sulphate and the redox mediator Anthraquinone-2,6-disulfonate (AQDS) on the decolorization of the azo dyes Congo Red (CR) and Reactive Black 5 (RB5). In anaerobic reactors free of extra sulphate dosage, the color removal efficiency decreased drastically when the external electron donor ethanol was removed. In presence of an extra dosage of sulphate, CR decolourisations were 47.8% (free of AQDS) and 96.5% (supplemented with AQDS). The decolourisations achieved in both reactors with RB5 were lower than the ones found with CR. Finally, the biogenic sulphide contribution on azo dye reduction was negligiable.
Resumo:
The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.
Resumo:
Catalase dismutes H20 2 to O2 and H20. In successive twoelectron reactions H20 2 induces both oxidation and reduction at the heme group. In the first step the protoheme prosthetic group of beef liver catalase forms compound I, in which the heme has been oxidized from Fe3+ to Fe4+=0 and a porphyrin radical has been created. Compound II is formed by the oneelectron reduction of comp I. It retains Fe4+=0 but lacks the porphyrin radical and is catalytically inert. Molecular structures are available for Escherichia coli Hydroperoxidase II, Micrococcus Iysodeiktus, Penicillium vitale and beef liver enzymes, which contain different hemes and heme pockets. In the present work, the pockets and substrate access channels of protoheme (beef liver & Micrococcus) and heme d (HPII of E. coli and Penicillium) catalases have been analysed using Quanta™ and CharmMTM molecular modeling packages on the Silicon Graphics Iris Indigo 2 computer. Experimental studies have been carried out with two catalases, HPII (and its mutants) and beef liver. Fluoride and formate' are inhibitors of both enzymes, and their binding is modulated by the heme and by distal residues N201 & H128. Both HPII and beef liver enzymes form compound I with H202 or peracetate. The reduction of beef liver enzyme compound I to II and the decay of compound II are accelerated by fluoride. The decay of compound II is also accelerated by formate, and this reagent acts as a 2-electron donor towards compound I of both enzymes. It is concluded that heme d enzymes (Penicillium and HPII of E. coli) are formed by autocatalytic transformation of protoheme in a modified pocket which contains a characteristic serine residue as well as a partially occluded heme channel. They are less active than protoheme enzymes but also do not form the inactive compound II species. Binding of peroxide as well as fluoride and formate is prevented by mutation of H128 and modulated by mutation of N201.
Resumo:
The objective of this thesis was to demonstrate the potential of fast atom bombardment mass spectrometry (FABMS) as a probe of condensed phase systems and its possible uses for the study of hydrogen bonding. FABMS was used to study three different systems. The first study was aimed at investigating the selectivity of the ligand tris(3,6-dioxaheptyl) amine (tdoha) for the alkali metal cations. FABMS results correlated well with infrared and nmr data. Systems where a crown ether competed with tdoha for a given alkali metal cation were also investigated by fast atom bombardment. The results were found to correlate with the cation affinity of tdoha and the ability of the crown ether to bind the cation. In the second and third studies, H-bonded systems were investigated. The imidazole-electron donor complexes were investigated and FABMS results showed the expected H-bond strength of the respective complexes. The effects of concentration, liquid matrix, water content, deuterium exchange, and pre-ionization of the complex were also investigated. In the third system investigated, the abundance of the diphenyl sulfone-ammonium salt complexes (presumably H-bonded) in the FABMS spectrum were found to correlate with qualitative considerations such as steric hindrance and strength of ion pairs.
Resumo:
Nuclear magnetic resonance spectroscopy has been used to study donor-acceptor complexes of boron trifluoride with several ureas, tetramethylthiourea, tetramethylselenourea, and tetramethylquanidine as well as adducts of tetramethyl- -urea with BF2Cl, BFC1 2 , and BC1 3 - A large number of mixed tetrahaloborate ions, including some of the ternary ones such as BF2CIBr-,have been obtained by ligand exchange reactions and studied by NMR techniques. The bonding in these ions is of the same inherent interest as the bonding in the isoelectronic tetrahalomethanes which have been the subject of many detailed studies and have been involved in a controversy concerning the existence of and the nature of "fluorine hyperconjugation" or C-F P1T- Pn bonding_ Ligand exchange reactions also gave rise to the difluoroboron cation, (TMU)20BF2+o The difluoroboron cation has been observed in solutions of TMU-BF3 , and has been proposed as a possible intermediate for fluorine exchange reactions in BF3 adducts.
Resumo:
Les peroxyrédoxines (PRXs) forment une famille de peroxydases communes à tous les organismes vivants et ubiquitaires dans la cellule. Leur particularité provient d’un ou deux résidus cystéines accomplissant un cycle d’oxydo-réduction à l’aide d’un donneur d’électron. Ces protéines thiols sensibles au potentiel redox sont impliquées dans le mécanisme de détoxification du H2O2, une molécule oxydante induite lors de situations de stress. Les PRXs pourraient être induites par le stress et régulées par phosphorylation. En effet, des expérimentations in vitro ont démontré que la nucléoside diphosphate kinase 1 (NDPK1) a la capacité de phosphoryler une PRX cytosolique de pomme de terre. Ce mémoire décrit les travaux expérimentaux effectués pour caractériser la fonction de la PRX. Pour cela, le clonage d’une isoforme a été effectué, suivi d’une caractérisation biochimique et d’une étude d’expression de la protéine. Les données de séquençage révèlent qu’il s’agit d’une PRX de type II phylogénétiquement liée aux PRXs cytosoliques. L’ADNc codant pour cette peroxyrédoxine (PRX1) a été cloné chez Solanum chacoense. Une protéine recombinante portant une étiquette (6xHis) en N-terminale a été produite. Des essais enzymatiques ont confirmé la fonction antioxydante de la protéine recombinante et un anticorps polyclonal a été généré chez le lapin puis utilisé en conjonction avec un anticorps anti-NDPK1 pour déterminer les patrons d’expression généraux de ces protéines chez Solanum lycopersicum et Solanum tuberosum lors de situations de stress. Les données démontrent que les deux protéines sont généralement co-exprimées mais pas co-régulées et que la PRX1 est induite en certaines situations de stress.
Resumo:
La présente thèse porte sur l'utilité de la théorie de la fonctionnelle de la densité dans le design de polymères pour applications photovoltaïques. L'étude porte d'abord sur le rôle des calculs théoriques pour la caractérisation des polymères dans le cadre de collaborations entre la théorie et l'expérience. La stabilité et les niveaux énergétiques de certaines molécules organiques sont étudiés avant et après la sulfuration de leurs groupements carbonyles, un procédé destiné à diminuer le band gap. Les propriétés de dynamique électronique, de séparation des porteurs de charges et de spectres de vibrations Raman sont également explorées dans un polymère à base de polycarbazole. Par la suite, l'utilité des calculs théoriques dans le design de polymères avant leurs synthèses est considérée. La théorie de la fonctionnelle de la densité est étudiée dans le cadre du modèle de Scharber afin de prédire l'efficacité des cellules solaires organiques. Une nouvelle méthode de design de polymères à faible band gaps, basée sur la forme structurale aromatique ou quinoide est également présentée, dont l'efficacité surpasse l'approche actuelle de donneur-accepteur. Ces études sont mises à profit dans l'exploration de l'espace moléculaire et plusieurs candidats de polymères aux propriétés électroniques intéressantes sont présentés.