953 resultados para Electrical stunning
Resumo:
Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 - 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.
Resumo:
Oxygen content is a very important factor influencing the electrical properties of YBa2Cu3Oy. In this work the electrical properties of laser deposited YBa2Cu3Oy thin films on LaAlO3(100), in the whole range 6 y 7, are studied. An electrical network model, which randomly assigns oxygen contents and R(T) characteristics to the different elements in the circuit according to an arbitrary distribution, is used to analyze several features in the measured R(T) characteristics as a function of oxygen homogeneity. The model takes into account both short-range and long-range oxygen inhomogeneities. Good agreement between estimated oxygen contents from x-ray diffraction data in our samples and the average oxygen contents used to reproduce their R(T) characteristics is found. The model points out that oxygen homogeneity is very important in order to get the best and reproducible properties, and for conduction and superconductivity analysis through the shape or derivatives of R(T) characteristics.
Resumo:
Abstract Electrical stimulation is a new way to treat digestive disorders such as constipation. Colonic propulsive activity can be triggered by battery operated devices. This study aimed to demonstrate the effect of direct electrical colonic stimulation on mean transit time in a chronic porcine model. The impact of stimulation and implanted material on the colonic wall was also assessed. Three pairs of electrodes were implanted into the caecal wall of 12 anaesthetized pigs. Reference colonic transit time was determined by radiopaque markers for each pig before implantation. It was repeated 4 weeks after implantation with sham stimulation and 5 weeks after implantation with electrical stimulation. Aboral sequential trains of 1-ms pulse width (10 V; 120 Hz) were applied twice daily for 6 days, using an external battery operated stimulator. For each course of markers, a mean value was computed from transit times obtained from individual pig. Microscopic examination of the caecum was routinely performed after animal sacrifice. A reduction of mean transit time was observed after electrical stimulation (19 +/- 13 h; mean +/- SD) when compared to reference (34 +/- 7 h; P = 0.045) and mean transit time after sham stimulation (36 +/- 9 h; P = 0.035). Histological examination revealed minimal chronic inflammation around the electrodes. Colonic transit time measured in a chronic porcine model is reduced by direct sequential electrical stimulation. Minimal tissue lesion is elicited by stimulation or implanted material. Electrical colonic stimulation could be a promising approach to treat specific disorders of the large bowel.
Resumo:
Brazilian soils have natural high chemical variability; thus, apparent electrical conductivity (ECa) can assist interpretation of crop yield variations. We aimed to select soil chemical properties with the best linear and spatial correlations to explain ECa variation in the soil using a Profiler sensor (EMP-400). The study was carried out in Sidrolândia, MS, Brazil. We analyzed the following variables: electrical conductivity - EC (2, 7, and 15 kHz), organic matter, available K, base saturation, and cation exchange capacity (CEC). Soil ECa was measured with the aid of an all-terrain vehicle, which crossed the entire area in strips spaced at 0.45 m. Soil samples were collected at the 0-20 cm depth with a total of 36 samples within about 70 ha. Classical descriptive analysis was applied to each property via SAS software, and GS+ for spatial dependence analysis. The equipment was able to simultaneously detect ECa at the different frequencies. It was also possible to establish site-specific management zones through analysis of correlation with chemical properties. We observed that CEC was the property that had the best correlation with ECa at 15 kHz.
Resumo:
ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM) as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC) and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM) contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case). Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.
Resumo:
The nutritional status of cystic fibrosis (CF) patients has to be regularly evaluated and alimentary support instituted when indicated. Bio-electrical impedance analysis (BIA) is a recent method for determining body composition. The present study evaluates its use in CF patients without any clinical sign of malnutrition. Thirty-nine patients with CF and 39 healthy subjects aged 6-24 years were studied. Body density and mid-arm muscle circumference were determined by anthropometry and skinfold measurements. Fat-free mass was calculated taking into account the body density. Muscle mass was obtained from the urinary creatinine excretion rate. The resistance index was calculated by dividing the square of the subject's height by the body impedance. We show that fat-free mass, mid-arm muscle circumference and muscle mass are each linearly correlated to the resistance index and that the regression equations are similar for both CF patients and healthy subjects.
Resumo:
BACKGROUND: Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.METHODS: In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with (31)phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.RESULTS: We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by (31)phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.CONCLUSIONS: Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.
Resumo:
The present study discusses the effect of iron doping in TiO2 thin films deposited by rf sputtering. Iron doping induces a structural transformation from anatase to rutile and electrical measurements indicate that iron acts as an acceptor impurity. Thermoelectric power measurement shows a transition between n-type and p-type electrical conduction for an iron concentration around 0.13 at.%. The highest p-type conductivity at room temperature achieved by iron doping was 10(-6) S m(-1).
Resumo:
Audit report on the American Recovery and Reinvestment Act (ARRA) - Program of Competitive Grants for Worker Training and Placement in High Growth and Emerging Industry Sectors program for the Iowa Green Renewable Electrical Energy Network Inc. (IGREEN) for the year ended June 30, 2012
Resumo:
This study details a method to statistically determine, on a millisecond scale and for individual subjects, those brain areas whose activity differs between experimental conditions, using single-trial scalp-recorded EEG data. To do this, we non-invasively estimated local field potentials (LFPs) using the ELECTRA distributed inverse solution and applied non-parametric statistical tests at each brain voxel and for each time point. This yields a spatio-temporal activation pattern of differential brain responses. The method is illustrated here in the analysis of auditory-somatosensory (AS) multisensory interactions in four subjects. Differential multisensory responses were temporally and spatially consistent across individuals, with onset at approximately 50 ms and superposition within areas of the posterior superior temporal cortex that have traditionally been considered auditory in their function. The close agreement of these results with previous investigations of AS multisensory interactions suggests that the present approach constitutes a reliable method for studying multisensory processing with the temporal and spatial resolution required to elucidate several existing questions in this field. In particular, the present analyses permit a more direct comparison between human and animal studies of multisensory interactions and can be extended to examine correlation between electrophysiological phenomena and behavior.
Resumo:
INTRODUCTION: Inhibitory control refers to our ability to suppress ongoing motor, affective or cognitive processes and mostly depends on a fronto-basal brain network. Inhibitory control deficits participate in the emergence of several prominent psychiatric conditions, including attention deficit/hyperactivity disorder or addiction. The rehabilitation of these pathologies might therefore benefit from training-based behavioral interventions aiming at improving inhibitory control proficiency and normalizing the underlying neurophysiological mechanisms. The development of an efficient inhibitory control training regimen first requires determining the effects of practicing inhibition tasks. METHODS: We addressed this question by contrasting behavioral performance and electrical neuroimaging analyses of event-related potentials (ERPs) recorded from humans at the beginning versus the end of 1 h of practice on a stop-signal task (SST) involving the withholding of responses when a stop signal was presented during a speeded auditory discrimination task. RESULTS: Practicing a short SST improved behavioral performance. Electrophysiologically, ERPs differed topographically at 200 msec post-stimulus onset, indicative of the engagement of distinct brain network with learning. Source estimations localized this effect within the inferior frontal gyrus, the pre-supplementary motor area and the basal ganglia. CONCLUSION: Our collective results indicate that behavioral and brain responses during an inhibitory control task are subject to fast plastic changes and provide evidence that high-order fronto-basal executive networks can be modified by practicing a SST.
Resumo:
The electrical stimulation of the dorsal columns of the spinal cord exerts a dual analgesic and vasodilatory effect on ischemic tissues. It is increasingly considered a valuable method to treat severe and otherwise intractable coronary and peripheral artery disease. The quality of the results depends from both a strict selection of the patients by vascular specialists and the frequency and quality of the follow-up controls. However the indications, limits, mode of action and results of spinal cord stimulation are still poorly understood. This article, based on a personal experience of 164 implantations for peripheral and coronary artery disease, aims to draw attention to this technique and to provide information on recent and future developments.
Resumo:
Surface-based ground penetrating radar (GPR) and electrical resistance tomography (ERT) are common tools for aquifer characterization, because both methods provide data that are sensitive to hydrogeologically relevant quantities. To retrieve bulk subsurface properties at high resolution, we suggest incorporating structural information derived from GPR reflection data when inverting surface ERT data. This reduces resolution limitations, which might hinder quantitative interpretations. Surface-based GPR reflection and ERT data have been recorded on an exposed gravel bar within a restored section of a previously channelized river in northeastern Switzerland to characterize an underlying gravel aquifer. The GPR reflection data acquired over an area of 240×40 m map the aquifer's thickness and two internal sub-horizontal regions with different depositional patterns. The interface between these two regions and the boundary of the aquifer with then underlying clay are incorporated in an unstructured ERT mesh. Subsequent inversions are performed without applying smoothness constraints across these boundaries. Inversion models obtained by using these structural constraints contain subtle resistivity variations within the aquifer that are hardly visible in standard inversion models as a result of strong vertical smearing in the latter. In the upper aquifer region, with high GPR coherency and horizontal layering, the resistivity is moderately high (N300 Ωm). We suggest that this region consists of sediments that were rearranged during more than a century of channelized flow. In the lower low coherency region, the GPR image reveals fluvial features (e.g., foresets) and generally more heterogeneous deposits. In this region, the resistivity is lower (~200 Ωm), which we attribute to increased amounts of fines in some of the well-sorted fluvial deposits. We also find elongated conductive anomalies that correspond to the location of river embankments that were removed in 2002.
Resumo:
Rapport de synthèse : Introduction : La stimulation électrique représente une nouvelle modalité thérapeutique de divers troubles digestifs. Dans la constipation par exemple, le péristaltisme colique peut être activé par un système électrique alimenté par une batterie. La présente étude a pour but de démontrer l'impact d'une stimulation électrique directe du côlon sur le temps de transit moyen, en utilisant un modèle expérimental chronique porcin. L'effet de la stimulation et du matériel implanté dans la paroi colique est également évalué. Matériel et méthode : Trois paires d'électrodes ont été implantées dans la paroi cæcale de douze porcs anesthésiés. Avant implantation, un temps de transit colique de référence a été déterminé chez chaque animal par utilisation de marqueurs radio-opaques. Cette évaluation a été répétée quatre semaines après implantation, sous stimulation factice, et cinq semaines après implantation, sous stimulation électrique. Des trains séquentiels et aboraux de stimulation (10 V ; 120 Hz ; 1 ms) ont été appliqués quotidiennement durant six jours, en utilisant un stimulateur externe fonctionnant sur batteries. Pour chaque série de marqueurs, une valeur moyenne a été calculée à partir du temps de transit individuel des porcs. Un examen microscopique du cæcum a été systématiquement entrepris après sacrifice des animaux. Résultats : Une réduction du temps de transit moyen a été observée après stimulation électrique (19h ± 13 ; moyenne ± DS), comparativement au temps de référence (34h ± 7 ; p=0.045) et au temps de transit après stimulation factice (36h ± 9 ; p=0.035). L'examen histologique a montré la présence d'une inflammation chronique minime, autour des électrodes. Conclusion : Le temps de transit colique porcin peut être réduit, en conditions expérimentales chroniques, par une stimulation électrique directe et séquentielle de l'intestin. Des lésions tissulaires limitées ont été occasionnées par la stimulation ou le matériel implanté. La stimulation électrique colique représente certainement une approche prometteuse du traitement de certains troubles spécifiques du côlon, avant tout fonctionnels.
Resumo:
The Electrical Examining Board is responsible for overseeing the licensing, permitting, inspection and continuing education requirements of the statewide electrician and electrical contractor program in Iowa. This issue review provides a summary of the program and a review of the current situation.