946 resultados para Electric modulus
Resumo:
Many previous studies regarding the estimation of mechanical properties of single walled carbon nanotubes (SWCNTs) report that, the modulus of SWCNTs is chirality, length and diameter dependent. Here, this dependence is quantitatively described in terms of high accuracy curve fit equations. These equations allow us to estimate the modulus of long SWCNTs (lengths of about 100-120 nm) if the value at the prescribed low lengths (lengths of about 5-10 nm) is known. This is supposed to save huge computational time and expense. Also, based on the observed length dependent behavior of SWCNT initial modulus, we predict that, SWCNT mechanical properties such as Young's modulus, secant modulus, maximum tensile strength, failure strength, maximum tensile strain and failure strain might also exhibit the length dependent behavior along with chirality and length dependence. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We report here an easily reversible set-reset process in a new Ge15Te83Si2 glass that could be a promising candidate for phase change random access memory applications. The I-V characteristics of the studied sample show a comparatively low threshold electric field (E-th) of 7.3 kV/cm. Distinct differences in the type of switching behavior are achieved by means of controlling the on state current. It enables the observation of a threshold type for less than 0.7 mA beyond memory type (set) switching. The set and reset processes have been achieved with a similar magnitude of 1 mA, and with a triangular current pulse for the set process and a short duration rectangular pulse of 10 msec width for the reset operation. Further, a self-resetting effect is seen in this material upon excitation with a saw-tooth/square pulse, and their response of leading and trailing edges are discussed. About 6.5 x 10(4) set-reset cycles have been undertaken without any damage to the device. (C) 2011 American Institute of Physics. doi: 10.1063/1.3574659]
Resumo:
Diamond like carbon films deposited by RF magnetron sputter deposition technique contain both SP2 and SP3 hybridized carbons. These films are structurally disordered and inhomogeneous. By the application of electric field across the film, these films are transformed to a more orderly structured diamond like carbon, bringing homogenity in the film. This transformation has resulted in the increase of the reflectivity of the metal(Aluminum), which is used as one of the electrodes for applying the electric field, by 5 times.
Resumo:
The mechanism of reduction of iron and chromium oxide from synthetic electric are furnace stainless steelmaking slags has been studied. The activation energy for reduction of FeO depends on the FeO content of the slag and the nature of the product formed. The rate of reduction of both FeO and Cr2O3 is controlled by diffusion of ions in the slag phase. The reduction of Cr2O3 primarily takes place at the slag/Fe-C droplets interface. IS/1352b. (C) 1998 The Institute of Materials.
Resumo:
Simultaneous reduction of iron and chromium oxides from synthetic electric are furnace stainless steelmaking slag in a graphite crucible has been studied. Above the melting point of iron the reduction of iron oxide leads to a carbon saturated Fe-C melt, but below the melting point of iron initially solid iron or iron carbide forms on the crucible surface. Only when a certain number of Fe-C droplets are formed does the reduction of chromium oxide start to form an Fe-Cr-C alloy. The reaction proceeds with pronounced foaming which depends on the basicity, temperature, and iron oxide content of the slag. IS/1352a (C) 1998 The Institute of Materials.
Resumo:
Road transportation, as an important requirement of modern society, is presently hindered by restrictions in emission legislations as well as the availability of petroleum fuels, and as a consequence, the fuel cost. For nearly 270 years, we burned our fossil cache and have come to within a generation of exhausting the liquid part of it. Besides, to reduce the greenhouse gases, and to obey the environmental laws of most countries, it would be necessary to replace a significant number of the petroleum-fueled internal-combustion-engine vehicles (ICEVs) with electric cars in the near future. In this article, we briefly describe the merits and demerits of various proposed electrochemical systems for electric cars, namely the storage batteries, fuel cells and electrochemical supercapacitors, and determine the power and energy requirements of a modern car. We conclude that a viable electric car could be operated with a 50 kW polymer-electrolyte fuel cell stack to provide power for cruising and climbing, coupled in parallel with a 30 kW supercapacitor and/or battery bank to deliver additional short-term burst-power during acceleration.
Resumo:
In the framework of a project aimed at developing a reliable hydrogen generator for mobile polymer electrolyte fuel cells (PEFCs), particular emphasis has been addressed to the analysis of catalysts able to assure high activity and stability in transient operations (frequent start-up and shut-down cycles). In this paper, the catalytic performance of 1 at.% Pt/ceria samples prepared by coprecipitation, impregnation and combustion, has been evaluated in the partial oxidation of methane. Methane conversion and hydrogen selectivity of 96 and 99%, respectively, associated with high stability during 100h of reaction under operative conditions (start-up and shut-down cycles), have been obtained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Molecular wires of charge transfer molecules were formed by co-evaporating the 7 7 8 8-Tetracyanoquinodimethane [TCNQ] (acceptor) and Tetrathiafulvalene [TTF] (donor) molecules across prefabricated metal electrodes. Molecular wires of TTF TCNQ were also formed by evaporating single complex of TTF:TCNQ across prefabricated metal electrodes The prefabricated metal electrodes were made using electron beam lithography on SiO2 and glass cover slip substrates. Even though TTF: TCNQ wires grown from both co-evaporation and evaporation techniques show semiconductor like behavior in temperature dependence of resistance they show different activation energies due the difference in stoichiometry of TTF and TCNQ.
Resumo:
Transmission of bulk power at high voltages over very long distances has become very imperative. At present, throughout the globe, this task has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. However, a reliable data on stress distribution in commonly employed string insulators are rather scarce. Considering this, the present work has made an attempt to study accurately, the field distribution in 220 kV strings for six different types of porcelain/ceramic insulators (Normal and Antifog discs) used for high voltage transmission. The surface charge simulation method is employed for the required field computation. Voltage and electric stress distribution is deduced and compared across different types of discs. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.
Resumo:
In this talk I discuss some aspects of the study of electric dipole moments (EDMs) of the fermions, in the context of R-parity violating (\rpv) Supersymmetry (SUSY). I will start with a brief general discussion of how dipole moments, in general, serve as a probe of physics beyond the Standard Model (SM) and an even briefer summary of \rpv SUSY. I will follow by discussing a general method of analysis for obtaining the leading fermion mass dependence of the dipole moments and present its application to \rpv SUSY case. Then I will summarise the constraints that the analysis of $e,n$ and $Hg$ EDMs provide for the case of trilinear \rpv SUSY couplings and make a few comments on the case of bilinear \rpv, where the general method of analysis proposed by us does not work.
Resumo:
Nuclear electro-magnetic pulse (NEMP) simulators which are used in the simulation of transient electromagnetic fields due to a high altitude nuclear detonation are generally excited with a double exponential high voltage pulse. This results in a current distribution on the wires of the simulator and hence a transient electric field in the working volume of the simulator where the test object is kept. It is found that for the simulator under study, the current distribution is non-uniform and so is the field distribution along the width of the simulator in the working volume. To make the current distribution uniform, several methods have been suggested and the results of these methods are analyzed and suitable conclusions are arrived at from those results.