981 resultados para Electric conductivity of solids
Resumo:
We have studied the dependence of the thermal conductivity kappa on the strength of the interparticle potential lambda and the strength of the external potential beta in the Frenkel-Kontorova model. We found that the functional relation can be expressed in a scaling form, kappa(proportional to) lambda 3/2/beta(2 center dot). This result is first obtained by nonequilibrium molecular dynamics. It is then confirmed by two analytical methods, the self-consistent phonon theory and the self-consistent stochastic reservoirs method. The thermal conductivity kappa is therefore a decreasing functon of beta and an increasing function of lambda.
Resumo:
Using the copolymer of acrylonitrile (AN), methyl methacrylate (MMA), and poly(ethylene glycol) methyl ether methacrylate as a backbone and poly(ethylene glycol) methyl ether (PEGME) with 1100 molecular weight as side chains, comb-like gel polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the gel copolymer electrolytes possess two glass transitions: alpha-transition and beta-transition. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T. as reference temperature. By reference to T-0 = 50 degrees C, the relation between log c, and c was found to be linear. The master curves are displaced progressively to higher frequencies as the content of plasticizer is increased. The relation between log tau(p) and the content of plasticizer is also linear.
Resumo:
Poly(3-butylthiophene) (P3BT)/insulating-polymer composites with high electrical conductivity have been prepared directly from the solution. These composites exhibit much higher conductivity compared to pure P3BT with the same preparation method provided that P3BT content is higher than 10 wt %. Morphological studies on both the pure P3BT and the composites with insulating polymer show that P3BT highly crystallizes and develops into whisker-like crystals. These nanowires are homogeneously distributed within the insulating polymer matrix and form conductive networks, which provide both extremely large interface area between conjugated polymer and insulating polymer matrix and highly efficient conductive channels through out the whole composite. In contrast, the conductivity enhancement of P3HT/PS composite is not so obvious and drops down immediately with increased PS content due mainly to the absence of highly crystalline whisker-like crystals and much larger scale phase separation between the components. The results presented here could further illuminate the origin of conductivity formation in organic semiconducting composites and promote applications of these polymer semiconductor/insulator composites in the fields of organic (opto-)electronics, electromagnetic shielding, and antistatic materials.
Resumo:
Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.
Resumo:
Solid solutions of Ce1-xNdxO2-x/2 (0.05 <= x <= 0.2) and (Ce1-xNdx)(0.95)MO0.05O2-delta (0.05 <= x <= 0.2) have been synthesized by a modified sol-gel method. Both materials have very low content of SiO2 (similar to 27 ppm). Their structures and ionic conductivities were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and electrochemical impedance spectroscopy (M). The XRD patterns indicate that these materials are single phases with a cubic fluorite structure. The powders calcined at 300 degrees C with a crystal size of 5.7 nm have good sinterability, and the relative density could reach above 96% after being sintered at 1450 degrees C. With the addition Of MoO3, the sintering temperature could be decreased to 1250 degrees C. Impedance spectroscopy measurement in the temperature range of 250-800 degrees C indicates that a sharp increase of conductivity is observed when a small amount of Nd2O3 is added into ceria, of which Ce0.85Nd0.15O1.925 (15NDC) shows the highest conductivity. With the addition of a small amount Of MoO3, the grain boundary conductivity of 15NDC at 600 degrees C increases from 2.56 S m(-1) to 5.62 S m(-1).
Resumo:
The organic/inorganic hybrid Langmuir-Blodgett (LB) films were obtained by the compact organization of poly(1,2-dihydro-2,2,4-trimethyl)quinoline (PQ), octadecylamine (ODA) and rare earth-substituted heteropolymolybdates. They were characterized by surface pressure-area (pi-A) isotherms, absorption spectra, fluorescence spectra, atomic force microscope (AFM) and scanning tunneling microscopy (STM). The atomic force microscope revealed a granular surface texture of nanosized rare earth-substituted heteropolymolybdate. The scanning tunneling microscopy indicated that the hybrid LB films containing rare earth-substituted heteropolymolybdates had the better electrical conductivity than LB film of PQ/ODA.
Resumo:
Three kinds of hybrid organic/inorganic Langmuir-Blodgett films are obtained by the compact organization of poly (1, 2-dihydro-2,2,4-trimethyl)quinoline (abridged as PQ), octadecylamine(abridged as OA) and rare earth-substituted heteropolyanions [abridged as RE(PW11,)(2), RE=Ce-II, Eu-II, Gd-II] using the Langmuir-Blodgett technique. They are characterized by the pi-A isotherms, the absorption spectra, the fluorescence spectra and the atomic force microscope. The scanning tunneling microscopy shows that the conductivity of the hybrid LB films is much better after heteropolyanions having been incorporated in the films.
Resumo:
We report the measurements of conductivity, I-V curve, and magnetoresistance of a single Au/polyaniline microfiber with a core-shell structure, on which a pair of platinum microleads was attached by focused ion beam. The Au/polyaniline microfiber shows a much higher conductivity (similar to 110 S/cm at 300 K) and a much weaker temperature dependence of resistance [R(4 K)/R(300 K)=5.1] as compared with those of a single polyaniline microtube [sigma(RT)=30-40 S/cm and R(4 K)/R(300 K)=16.2]. The power-law dependence of R(T)proportional to T-beta, with beta=0.38, indicates that the measured Au/polyaniline microfiber is lying in the critical regime of the metal-insulator transition. In addition, the microfiber shows a H-2 dependent positive magnetoresistance at 2, 4, and 6 K.
Resumo:
A series of compounds, La2/3 - xLi3xMoO4, were first prepared. Their structures are tetragonal scheelites with the cationic defects. The cell parameters a, c and values of c/a decrease with the increasing of the substitution amount (3x) of lithium ion. Cationic vacancies are getting more as Li+ concentration is lower. The diffusion of lithium ion is predominant. The concentration of charge carriers increases with increasing the substitution amount (3x) of lithium ion, meanwhile, the concentration of cationic vacancies decreases. The conductivity approaches the best when the substitution amount (3x) of lithium ion is about 0.3. The conductivity of La0.567Li0.3MoO4 is 6.5 x 10(-6) S . cm(-1) at room temperature.
Resumo:
Polymeric electrolytes of (PEO1)(10) LiClO4-Al2O3 (PEO: poly (ethyleneoxide)) and (PEO2)(16)LiClO4-EC (EC: ethylene carbonate) were prepared. We proposed an equivalent circuit and gave the meaning of the concerned circuit elements. When the impedance spectrum deformed severely, the ionic conductivity of polymer electrolyte was determined by using the maximum of imaginary impedance, which is a convenient method.
Resumo:
The effects of plasticizer ethylene carbonate (EC) on the AC impedance spectra and the ionic conductivity are reported. With increasing of EC concentration the semicircle in high frequency disappears, and the slope of the straight line in low frequency decreases. The data obtained from impedance experiments can be explained using an equivalent circuit proposed. On the other hand, the room temperature conductivity increases with EC concentration because of the increase of the segmental flexibility of PEO. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range follows Arrhenius type, but when EC concentration is larger than 20%, the temperature dependence of conductivity obeys the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.
Resumo:
The ac impedance plots of ( PEO)(16) LiClO4-EC composite polymer electrolytes were studied. The equivalent circuit of stainless steel electrode(SS)/composite electrolyte/SS system was applied to explain the ac impedance plots, The results showed that the equivalent circuit could fit the experimental data very well. The ionic conductivity was calculated using the bulk resistance that was obtained from equivalent circuit. The effect of EC on the conductive behavior was explained by the interactions among different species formed in the composite polymer electrolytes. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range followed Arrhenius type, but when EC concentration was larger than 20%, the temperature dependence of conductivity obeyed the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.
Resumo:
Composite polymeric electrolytes of PEO-LiClO4-Al2O3 and PEO-LiClO4-EC were prepared and the ionic conductivity by a.c. impedance was calculated using four different methods, and three kinds of representations of a.c. impedance spectra were adopted. The first is based on the Nyquist impedance plot of the imaginary part (Z") versus the real part (Z') of the complex impedance. The second and the third correspond to the plots of imaginary impedance Z" as a function of frequency (f), and the absolute value (\Z\) and phase angle (theta) as a function of f, respectively. It was found that the values of the ionic conductivity calculated using the three representations of a.c. impedance spectra are basically identical.
Resumo:
A composite polymer electrolyte of Polyethylene oxide (PEO)-LiClO4 containing fine Al2O3 particles was studied by using differential scanning calorimetry, infrared spectroscopy and electrochemical impedance spectroscopy. Compared with the polymer electrolyte without Al2O3 particles, the glass transition temperature and the degree of crystallinity were decreased, and the room temperature conductivity of PEO-LiClO4-Al2O3 composite polymer electrolyte was considerably enhanced. Moreover, the equivalent circuits and the effect of dc potential on impedance spectroscopy were discussed.