900 resultados para Elaborazione d’immagini, Microscopia, Istopatologia, Classificazione, K-means
Resumo:
A erodibilidade é um fator de extrema importância na caracterização da perda de solo, representando os processos que regulam a infiltração de água e sua resistência à desagregação e o transporte de partículas. Assim, por meio da análise de dependência espacial dos componentes principais da erodibilidade (fator K), objetivou-se estimar a erodibilidade do solo em uma área de nascentes da microbacia do Córrego do Tijuco, Monte Alto-SP, e analisar a variabilidade espacial das variáveis granulométricas do solo ao longo do relevo. A erodibilidade média da área foi considerada alta, e a análise de agrupamento k-means apontou para uma formação de cinco grupos: no primeiro, os altos teores de areia grossa (AG) e média (AM) condicionaram sua distribuição nas áreas planas; o segundo, caracterizado pelo alto teor de areia fina (AF), distribui-se nos declives mais convexos; o terceiro, com altos teores de silte e areia muito fina (AMF), concentrou-se nos maiores declives e concavidades; o quarto, com maior teor de argila, seguiu as zonas de escoamento de água; e o quinto, com alto teor de matéria orgânica (MO) e areia grossa (AG), distribui-se nas proximidades da zona urbana. A análise de componentes principais (ACP) mostrou quatro componentes com 87,4 % das informações, sendo o primeiro componente principal (CP1) discriminado pelo transporte seletivo de partículas principalmente em zonas pontuais de maior declividade e acúmulo de sedimentos; o segundo (CP2), discriminado pela baixa coesão entre as partículas, mostra acúmulo da areia fina nas áreas de menor cota em toda a área de concentração de água; o terceiro (CP3), discriminado pela maior agregação do solo, concentra-se principalmente nas bases de grandes declives; e o quarto (CP4), discriminado pela areia muito fina, distribui-se ao longo das declividades nas maiores altitudes. Os resultados sugerem o comportamento granulométrico do solo, que se mostra suscetível ao processo erosivo devido às condições texturais superficiais e à movimentação do relevo.
Resumo:
The use of the maps obtained from remote sensing orbital images submitted to digital processing became fundamental to optimize conservation and monitoring actions of the coral reefs. However, the accuracy reached in the mapping of submerged areas is limited by variation of the water column that degrades the signal received by the orbital sensor and introduces errors in the final result of the classification. The limited capacity of the traditional methods based on conventional statistical techniques to solve the problems related to the inter-classes took the search of alternative strategies in the area of the Computational Intelligence. In this work an ensemble classifiers was built based on the combination of Support Vector Machines and Minimum Distance Classifier with the objective of classifying remotely sensed images of coral reefs ecosystem. The system is composed by three stages, through which the progressive refinement of the classification process happens. The patterns that received an ambiguous classification in a certain stage of the process were revalued in the subsequent stage. The prediction non ambiguous for all the data happened through the reduction or elimination of the false positive. The images were classified into five bottom-types: deep water; under-water corals; inter-tidal corals; algal and sandy bottom. The highest overall accuracy (89%) was obtained from SVM with polynomial kernel. The accuracy of the classified image was compared through the use of error matrix to the results obtained by the application of other classification methods based on a single classifier (neural network and the k-means algorithm). In the final, the comparison of results achieved demonstrated the potential of the ensemble classifiers as a tool of classification of images from submerged areas subject to the noise caused by atmospheric effects and the water column
Resumo:
ln this work the implementation of the SOM (Self Organizing Maps) algorithm or Kohonen neural network is presented in the form of hierarchical structures, applied to the compression of images. The main objective of this approach is to develop an Hierarchical SOM algorithm with static structure and another one with dynamic structure to generate codebooks (books of codes) in the process of the image Vector Quantization (VQ), reducing the time of processing and obtaining a good rate of compression of images with a minimum degradation of the quality in relation to the original image. Both self-organizing neural networks developed here, were denominated HSOM, for static case, and DHSOM, for the dynamic case. ln the first form, the hierarchical structure is previously defined and in the later this structure grows in an automatic way in agreement with heuristic rules that explore the data of the training group without use of external parameters. For the network, the heuristic mIes determine the dynamics of growth, the pruning of ramifications criteria, the flexibility and the size of children maps. The LBO (Linde-Buzo-Oray) algorithm or K-means, one ofthe more used algorithms to develop codebook for Vector Quantization, was used together with the algorithm of Kohonen in its basic form, that is, not hierarchical, as a reference to compare the performance of the algorithms here proposed. A performance analysis between the two hierarchical structures is also accomplished in this work. The efficiency of the proposed processing is verified by the reduction in the complexity computational compared to the traditional algorithms, as well as, through the quantitative analysis of the images reconstructed in function of the parameters: (PSNR) peak signal-to-noise ratio and (MSE) medium squared error
Resumo:
Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth
Resumo:
This work proposes a kinematic control scheme, using visual feedback for a robot arm with five degrees of freedom. Using computational vision techniques, a method was developed to determine the cartesian 3d position and orientation of the robot arm (pose) using a robot image obtained through a camera. A colored triangular label is disposed on the robot manipulator tool and efficient heuristic rules are used to obtain the vertexes of that label in the image. The tool pose is obtained from those vertexes through numerical methods. A color calibration scheme based in the K-means algorithm was implemented to guarantee the robustness of the vision system in the presence of light variations. The extrinsic camera parameters are computed from the image of four coplanar points whose cartesian 3d coordinates, related to a fixed frame, are known. Two distinct poses of the tool, initial and final, obtained from image, are interpolated to generate a desired trajectory in cartesian space. The error signal in the proposed control scheme consists in the difference between the desired tool pose and the actual tool pose. Gains are applied at the error signal and the signal resulting is mapped in joint incrementals using the pseudoinverse of the manipulator jacobian matrix. These incrementals are applied to the manipulator joints moving the tool to the desired pose
Resumo:
Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second
Resumo:
The use of non-human primates in scientific research has contributed significantly to the biomedical area and, in the case of Callithrix jacchus, has provided important evidence on physiological mechanisms that help explain its biology, making the species a valuable experimental model in different pathologies. However, raising non-human primates in captivity for long periods of time is accompanied by behavioral disorders and chronic diseases, as well as progressive weight loss in most of the animals. The Primatology Center of the Universidade Federal do Rio Grande do Norte (UFRN) has housed a colony of C. jacchus for nearly 30 years and during this period these animals have been weighed systematically to detect possible alterations in their clinical conditions. This procedure has generated a volume of data on the weight of animals at different age ranges. These data are of great importance in the study of this variable from different perspectives. Accordingly, this paper presents three studies using weight data collected over 15 years (1985-2000) as a way of verifying the health status and development of the animals. The first study produced the first article, which describes the histopathological findings of animals with probable diagnosis of permanent wasting marmoset syndrome (WMS). All the animals were carriers of trematode parasites (Platynosomum spp) and had obstruction in the hepatobiliary system; it is suggested that this agent is one of the etiological factors of the syndrome. In the second article, the analysis focused on comparing environmental profile and cortisol levels between the animals with normal weight curve evolution and those with WMS. We observed a marked decrease in locomotion, increased use of lower cage extracts and hypocortisolemia. The latter is likely associated to an adaptation of the mechanisms that make up the hypothalamus-hypophysis-adrenal axis, as observed in other mammals under conditions of chronic malnutrition. Finally, in the third study, the animals with weight alterations were excluded from the sample and, using computational tools (K-means and SOM) in a non-supervised way, we suggest found new ontogenetic development classes for C. jacchus. These were redimensioned from five to eight classes: infant I, infant II, infant III, juvenile I, juvenile II, sub-adult, young adult and elderly adult, in order to provide a more suitable classification for more detailed studies that require better control over the animal development
Resumo:
Measures of mortality represent one of the most important indicators of health conditions. For comprising the larger rate of deaths, the study of mortality in the elderly population is regarded as essential to understand the health situation. In this sense, the present study aims to analyze the mortality profile of the population from 60 to 69 (young elders) and older than 80 years old (oldest old) in the Rio Grande do Norte state (Brazil) in the period 2001 to 2011, and to identify the association with contextual factors and variables about the quality of the Mortality Information System (SIM). For this purpose, Mortality Proportional (MP) was calculated for the state and Specific Mortality Rate by Age (CMId) , according to chapters of ICD- 10, to the municipalities of Rio Grande do Norte , through data from the Mortality Information System (SIM) and the Brazilian Institute of Geography and Statistics (IGBE). In order to identify groups of municipalities with similar mortality profiles, Nonhierarchical Clustering K-means method was applied and the Factor Analysis by the Principal Components Analysis was resort to reduce contextual variables. The spatial distribution of these groups and the factors were visualized using the Spatial Analysis Areas technique. During the period investigated, 21,813 younger elders deaths were recorded , with a predominance of deaths from circulatory diseases (32.75%) and neoplasms (22.9 %) . Among the oldest old, 50,637 deaths were observed, which 35.26% occurred because of cardiovascular diseases and 17.27% of ill-defined causes. Clustering Analysis produced three clusters to the two age groups and Factor Analysis reduced the contextual variables into three factors, also the sum of the factor scores was considered. Among the younger elders, the groups are called misinformation profile, development profile and development paradox, which showed a statistically significant association with education and poverty and extreme poverty factors, factorial sum and the variable related to underreporting of deaths. Misinformation profile remained in the oldest old group, accompanied by the epidemiological transition profile and the epidemiological paradox, that were statistically associated with the development and health factor, as well as with the variables that indicate the SIM quality: proportion of blank fields about the schooling and underreporting. It proposed that the mortality profiles of the younger elders and oldest old differ on the importance of the basic causes and that are influenced by different contextual aspects , observing that 60 to 69 years group is more affected by such aspects. Health inequalities can be reduced by measures aimed to improve levels of education and poverty, especially in younger elders, and by optimizing the use of health services, which is more associated to the oldest old health situation. Furthermore, it is important to improve the quality of information for the two age groups
Resumo:
The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in the scientific community. While bioinformaticians have proposed new clustering methods that take advantage of characteristics of the gene expression data, the medical community has a preference for using classic clustering methods. There have been no studies thus far performing a large-scale evaluation of different clustering methods in this context. This work presents the first large-scale analysis of seven different clustering methods and four proximity measures for the analysis of 35 cancer gene expression data sets. Results reveal that the finite mixture of Gaussians, followed closely by k-means, exhibited the best performance in terms of recovering the true structure of the data sets. These methods also exhibited, on average, the smallest difference between the actual number of classes in the data sets and the best number of clusters as indicated by our validation criteria. Furthermore, hierarchical methods, which have been widely used by the medical community, exhibited a poorer recovery performance than that of the other methods evaluated. Moreover, as a stable basis for the assessment and comparison of different clustering methods for cancer gene expression data, this study provides a common group of data sets (benchmark data sets) to be shared among researchers and used for comparisons with new methods
Resumo:
Objective to establish a methodology for the oil spill monitoring on the sea surface, located at the Submerged Exploration Area of the Polo Region of Guamaré, in the State of Rio Grande do Norte, using orbital images of Synthetic Aperture Radar (SAR integrated with meteoceanographycs products. This methodology was applied in the following stages: (1) the creation of a base map of the Exploration Area; (2) the processing of NOAA/AVHRR and ERS-2 images for generation of meteoceanographycs products; (3) the processing of RADARSAT-1 images for monitoring of oil spills; (4) the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products; and (5) the structuring of a data base. The Integration of RADARSAT-1 image of the Potiguar Basin of day 21.05.99 with the base map of the Exploration Area of the Polo Region of Guamaré for the identification of the probable sources of the oil spots, was used successfully in the detention of the probable spot of oil detected next to the exit to the submarine emissary in the Exploration Area of the Polo Region of Guamaré. To support the integration of RADARSAT-1 images with NOAA/AVHRR and ERS-2 image products, a methodology was developed for the classification of oil spills identified by RADARSAT-1 images. For this, the following algorithms of classification not supervised were tested: K-means, Fuzzy k-means and Isodata. These algorithms are part of the PCI Geomatics software, which was used for the filtering of RADARSAT-1 images. For validation of the results, the oil spills submitted to the unsupervised classification were compared to the results of the Semivariogram Textural Classifier (STC). The mentioned classifier was developed especially for oil spill classification purposes and requires PCI software for the whole processing of RADARSAT-1 images. After all, the results of the classifications were analyzed through Visual Analysis; Calculation of Proportionality of Largeness and Analysis Statistics. Amongst the three algorithms of classifications tested, it was noted that there were no significant alterations in relation to the spills classified with the STC, in all of the analyses taken into consideration. Therefore, considering all the procedures, it has been shown that the described methodology can be successfully applied using the unsupervised classifiers tested, resulting in a decrease of time in the identification and classification processing of oil spills, if compared with the utilization of the STC classifier
Resumo:
Tendo-se em conta a expectativa de vida cada vez mais alta, vários estudos têm sido desenvolvidos de modo a contribuir para a melhoria da qualidade de vida na terceira idade. Objetivou-se conhecer a opinião dos idosos de um município de porte médio do interior paulista sobre o que é qualidade de vida, através de uma pergunta aberta que foi incluída como parte de um inquérito populacional sobre estilo e qualidade de vida. A análise da referida questão foi realizada através do método de Análise de Conteúdo. Posteriormente calcularam-se as freqüências das categorias obtidas, agrupadas segundo o método de Ward, e em seguida os idosos foram agrupados segundo o método de k-médias. Os resultados indicaram a existência de três grupos de idosos segundo sua definição de qualidade de vida: o primeiro valorizou a questão afetiva e a família; o segundo priorizou a obtenção do prazer e conforto; o terceiro poderia ser sintetizado como o idoso que identifica a qualidade de vida colocando em prática o seu ideário de vida. Sugere-se que, na implementação de ações, se objetive melhorar a qualidade de vida do idoso, levando-se em conta as magnitudes e as diferenças de cada grupo.
Resumo:
Background: Since establishing universal free access to antiretroviral therapy in 1996, the Brazilian Health System has increased the number of centers providing HIV/AIDS outpatient care from 33 to 540. There had been no formal monitoring of the quality of these services until a survey of 336 AIDS health centers across 7 Brazilian states was undertaken in 2002. Managers of the services were asked to assess their clinics according to parameters of service inputs and service delivery processes. This report analyzes the survey results and identifies predictors of the overall quality of service delivery.Methods: The survey involved completion of a multiple-choice questionnaire comprising 107 parameters of service inputs and processes of delivering care, with responses assessed according to their likely impact on service quality using a 3-point scale. K-means clustering was used to group these services according to their scored responses. Logistic regression analysis was performed to identify predictors of high service quality.Results: The questionnaire was completed by 95.8% (322) of the managers of the sites surveyed. Most sites scored about 50% of the benchmark expectation. K-means clustering analysis identified four quality levels within which services could be grouped: 76 services (24%) were classed as level 1 (best), 53 (16%) as level 2 (medium), 113 (35%) as level 3 (poor), and 80 (25%) as level 4 (very poor). Parameters of service delivery processes were more important than those relating to service inputs for determining the quality classification. Predictors of quality services included larger care sites, specialization for HIV/AIDS, and location within large municipalities.Conclusion: The survey demonstrated highly variable levels of HIV/AIDS service quality across the sites. Many sites were found to have deficiencies in the processes of service delivery processes that could benefit from quality improvement initiatives. These findings could have implications for how HIV/AIDS services are planned in Brazil to achieve quality standards, such as for where service sites should be located, their size and staffing requirements. A set of service delivery indicators has been identified that could be used for routine monitoring of HIV/AIDS service delivery for HIV/AIDS in Brazil (and potentially in other similar settings).
Resumo:
Sessenta e nove acessos de Psidium, coletados em seis estados brasileiros, foram analisados para dois métodos não hierárquicos de agrupamento e por componentes principais (CP), visando orientar programas de melhoramento. Foram analisadas as variáveis ácido ascórbico, β-caroteno, licopeno, fenóis totais, flavonóides totais, atividade antioxidante, acidez titulável, sólidos solúveis, açúcares solúveis totais, teor de umidade, diâmetro lateral e transversal do fruto, peso da polpa e das sementes/fruto, número e produção de frutos/planta. Foram observados agrupamentos específicos para os acessos de araçazeiros no método de Tocher e do k-means e na dispersão tridimensional dos quatro CPs. Os acessos de araçazeiros foram separados dos de goiabeira. Não foi observado nenhum agrupamento específico por estado de coleta, indicando a inexistência de barreiras na propagação dos acessos de goiabeira. As análises sugerem a prospecção de maior número de amostras de germoplasma num menor número de regiões, bem como acessos divergentes com alto teor de compostos nutricionais.
Resumo:
Os dados são provenientes de 234 touros da raça Nelore participantes de um teste de progênie, no período de 1996 a 2003. A diferença esperada na progênie (DEP) de sete características: peso aos 120 e 210 dias, efeito materno (DMPP120 e DMPP210), peso e perímetro escrotal aos 365 e 450 dias, efeito direto (DDP365, DDP450, DDPE365 e DDPE450) e idade ao primeiro parto (DDIPP) foi utilizada para classificar os animais em três grupos, assim como identificar quais as características possuíram maior poder discriminatório na formação de cada grupo. Para tanto, foram utilizados procedimentos estatísticos multivariados de análise de agrupamentos k-médias e componentes principais. Os resultados evidenciaram que, dos três grupos formados, dois se destacaram quanto aos valores médios das DEPs. A importância desses dois grupos de touros foi confirmada pela análise de componentes principais, que associou a eles valores superiores de DEPs diretas de peso e perímetro escrotal. A quantidade da variabilidade original retida pelos dois primeiros componentes principais foi de 70,22%. Estes procedimentos mostraram-se eficientes e constituíram importantes ferramentas para classificar touros, discriminar variáveis, bem como resumir informações multivariadas, podendo ser usados como auxílio valioso na seleção de reprodutores para uso nos programas de melhoramento genético.
Resumo:
O objetivo deste trabalho é dar uma contribuição ao estudo das condições climáticas do Estado do Rio de Janeiro, visando a uma melhor Classificação Climática por meio da identificação de regiões homogêneas em precipitação. Para isto foram utilizadas médias mensais da precipitação de 48 estações meteorológicas, em um período de 30 anos (1971-2000). A análise hierárquica de agrupamento, a orografia e a proximidade do mar, mostraram que o Estado do Rio de Janeiro pode ser dividido, quanto à precipitação, em seis regiões pluviometricamente homogêneas o que possibilitou classificar as estações meteorológicas pelo método de classificação não hierárquica k-means. A região norte do Estado, com precipitações anuais em torno de 870 mm é a mais seca, e a região da encosta sul da Serra do Mar, com 2020 mm, é a mais chuvosa. Mas, em ambas as regiões, os valores da precipitação da estação chuvosa representam em torno de 70% dos totais anuais.