892 resultados para Editor di Testo collaborativi,comportamento utenti,etherpad lite,RTCE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesi riguardo la fase preliminare di una campagna sperimentale su elementi rinforzati a flessione e taglio con fibra di basalto e malta e successivamente testati al fuoco. Comprende una parte relativa al comportamento dei comositi allle alte temperature e una sul problema della delaminazione alle alte temperature. Sono inoltre condotte simulazione numeriche relativamente al problema dell trasmissione del calore all'interno della sezione, con particolare attenzione alla modellazione dell'intuemescente. Sono stati eseguite prove di pull-out sui rinforzi e una serie di prove a compressione a caldo sulla malta d'incollaggio.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Questa tesi affronta lo studio di una tipologia di vibrazione autoeccitata, nota come chatter, che si manifesta nei processi di lavorazione ad asportazione di truciolo ed in particolare nelle lavorazioni di fresatura. La tesi discute inoltre lo sviluppo di una tecnica di monitoraggio e diagnostica del chatter basato sul rilievo di vibrazioni. Il fenomeno del chatter è caratterizzato da violente oscillazioni tra utensile e pezzo in lavorazione ed elevate emissioni acustiche. Il chatter, se non controllato, causa uno scadimento qualitativo della finitura superficiale e delle tolleranze dimensionali del lavorato, una riduzione della vita degli utensili e dei componenti della macchina. Questa vibrazione affligge negativamente la produttività e la qualità del processo di lavorazione e pregiudica l’interazione uomo-macchina-ambiente. Per una data combinazione di macchina, utensile e pezzo lavorato, i fattori che controllano la velocità di asportazione del materiale sono gli stessi che controllano l’insorgenza del chatter: la velocità di rotazione del mandrino, la profondità assiale di passata e la velocità di avanzamento dell’utensile. Per studiare il fenomeno di chatter, con l’obbiettivo di individuare possibili soluzioni per limitarne o controllarne l’insorgenza, vengono proposti in questa tesi alcuni modelli del processo di fresatura. Tali modelli comprendono il modello viscoelastico della macchina fresatrice e il modello delle azioni di taglio. Per le azioni di taglio è stato utilizzato un modello presente in letteratura, mentre per la macchina fresatrice sono stati utilizzato modelli a parametri concentrati e modelli modali analitico-sperimentali. Questi ultimi sono stati ottenuti accoppiando un modello modale sperimentale del telaio, completo di mandrino, della macchina fresatrice con un modello analitico, basato sulla teoria delle travi, dell’utensile. Le equazioni del moto, associate al processo di fresatura, risultano essere equazioni differenziali con ritardo a coefficienti periodici o PDDE (Periodic Delay Diefferential Equations). È stata implementata una procedura numerica per mappare, nello spazio dei parametri di taglio, la stabilità e le caratteristiche spettrali (frequenze caratteristiche della vibrazione di chatter) delle equazioni del moto associate ai modelli del processo di fresatura proposti. Per testare i modelli e le procedure numeriche proposte, una macchina fresatrice CNC 4 assi, di proprietà del Dipartimento di Ingegneria delle Costruzioni Meccaniche Nucleari e Metallurgiche (DIEM) dell’Università di Bologna, è stata strumentata con accelerometri, con una tavola dinamometrica per la misura delle forze di taglio e con un adeguato sistema di acquisizione. Eseguendo varie prove di lavorazione sono stati identificati i coefficienti di pressione di taglio contenuti nel modello delle forze di taglio. Sono stati condotti, a macchina ferma, rilievi di FRFs (Funzioni Risposta in Frequenza) per identificare, tramite tecniche di analisi modale sperimentale, i modelli del solo telaio e della macchina fresatrice completa di utensile. I segnali acquisiti durante le numerose prove di lavorazione eseguite, al variare dei parametri di taglio, sono stati analizzati per valutare la stabilità di ciascun punto di lavoro e le caratteristiche spettrali della vibrazione associata. Questi risultati sono stati confrontati con quelli ottenuti applicando la procedura numerica proposta ai diversi modelli di macchina fresatrice implementati. Sono state individuate le criticità della procedura di modellazione delle macchine fresatrici a parametri concentrati, proposta in letteratura, che portano a previsioni erronee sulla stabilità delle lavorazioni. È stato mostrato come tali criticità vengano solo in parte superate con l’utilizzo dei modelli modali analitico-sperimentali proposti. Sulla base dei risultati ottenuti, è stato proposto un sistema automatico, basato su misure accelerometriche, per diagnosticare, in tempo reale, l’insorgenza del chatter durante una lavorazione. È stato realizzato un prototipo di tale sistema di diagnostica il cui funzionamento è stato provato mediante prove di lavorazione eseguite su due diverse macchine fresatrici CNC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

I fattori che, nei primi anni dell'aviazione, contribuivano al verificarsi o meno di una sciagura aerea erano principalmente di natura meccanica, mentre oggi la maggior parte degli incidenti è attribuibile all’errore umano. Nel corso del tempo sono stati sviluppati modelli per l’analisi del fattore umano ed ha assunto un ruolo fondamentale lo studio del crashworthiness allo scopo di sviluppare tecnologie che contribuiscano alla riduzione di incidenti aerei e del tasso di mortalità. In questo studio è stata analizzata la resistenza della fusoliera di un aliante DG-100G Elan nelle principali tipologie di impatto. Le statistiche evidenziano, come cause principali di incidente, la caduta in vite e lo stallo in prossimità del suolo. Dall’analisi dei risultati ottenuti con la configurazione di base dell’aliante è stata delineata una possibile modifica per migliorarne la resistenza ad impatto. Obiettivo dello studio è la verifica in prima approssimazione della bontà o meno dei risultati ottenuti attraverso l’introduzione delle modifiche, valutando la differenza di quest’ultimi fra le due configurazioni.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gli acciai inossidabili austenitici presentano ottime caratteristiche che li rendono ideali in tutti quei settori in cui è richiesta un’elevata resistenza alla corrosione associata a caratteristiche estetiche e funzionali. L’acciaio AISI 316L risulta essere uno dei più studiati ed utilizzati, specie nell’industria alimentare e farmaceutica, dove leapparecchiature debbono poter essere sottoposte ad aggressive procedure di sanificazione. Tuttavia, la modesta resistenza meccanica e la bassa durezza superficiale di questo acciaio determinano un comportamento non soddisfacente dal punto di vista dell’usura da strisciamento in assenza di lubrificanti, situazione che si verifica sovente in molti macchinari dedicati a queste industrie. Tra le varie soluzioni, studiate per migliorare il suo comportamento tribologico, la cementazione a bassa temperatura (LowTemperature Carburizing, LTC) seguita dalla deposizione PE-CVD (Plasma-Enhanced Chemical Vapour Deposition) di un rivestimento di carbonio amorfo idrogenato (a-C:H), sembra essere molto promettente. In questo lavoro vengono analizzate le caratteristiche tribologiche dell’acciaio AISI 316L cementato a bassa temperatura e rivestito di carbonio amorfo idrogenato, tramite prove tribologiche di strisciamento non lubrificato in geometria di contatto pattino su cilindro. Sono state verificate, inoltre, le caratteristiche microstrutturali e meccaniche superficiali del rivestimento multistrato LTC/a-C:H tramite osservazioni morfologiche/topografiche, analisi in spettroscopia micro-Raman e misure di indentazione strumentata sulle superfici rivestite, seguite da analisi metallografia e misura dei profili di microdurezza Vickers in sezione trasversale. I risultati ottenuti dimostrano che, ai fini di contenere l’effetto negativo legato all’aumento di rugosità dovuto al trattamento LTC, è opportuno effettuare una lucidatura precedente al trattamento stesso, poiché effettuandola successivamente si rischierebbe dicomprometterne lo strato efficace. Inoltre, si osserva come il trattamento LTC incrementi le capacità del substrato di supportare il rivestimento a-C:H, portando ad un miglioramento delle prestazioni tribologiche, nelle prove di strisciamento non lubrificato. Infine, si dimostra come l’utilizzo di un rivestimento a base di carbonio amorfo idrogenato adeguatamente supportato permetta una riduzione dell’attrito (di oltre cinque volte) e dell’usura (di circa dieci ordini di grandezza) rispetto ai corrispondenti materiali non rivestiti.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Descrizione dell'effetto favorevole sulla resistenza a fatica di un piatto forato della presenza di un accoppiamento per interferenza, rilevato mediante prove sperimentali e simulazioni agli elementi finiti.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study presented in this work deals with the investigation of the effects produced by two common techniques of static balancing on the dynamic performances of closed-chain linkages, taking into account the compliance of the mechanism components. The long-term goal of the research consists in determining an optimal balancing strategy for parallel spatial manipulators. The present contribution is a starting point and it focuses on the planar four-bar linkage, intended as the simplest example of closed-chain mechanism. The elastodynamic behaviour of an unbalanced four-bar linkage and two balanced ones, respectively obtained by mass and elastic balancing, is investigated by means of both numerical simulations and experimental tests. The purpose of this work is to obtain preliminary results, to be refined and broadened in future developments

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Attraverso il programma agli elementi finiti Abaqus, è stato modellato un sistema composto da massetto-adesivo-piastrelle al fine di determinare le prestazioni e la durabilità di una piastrellatura sottoposta a definiti livelli di sollecitazione. In particolare è stata eseguita un’analisi parametrica per comprendere se il meccanismo di collasso, caratterizzato dal distacco delle piastrelle dal massetto, dipenda dai parametri geometrici del sistema e dalle proprietà meccaniche. Il modello è stato calibrato ed ottimizzato per rispondere alle esigenze del CCB (Centro Ceramico Bologna, area disciplinare della scienza e tecnologia dei materiali), che tramite una convenzione con il dipartimento DICAM - Scienze delle costruzioni, richiede, per garantire la durabilità dell’installazione, l’interpretazione dei seguenti punti: - Influenza di un aumento del formato delle piastrelle; - Influenza di una riduzione dello spessore della fuga; - Influenza delle caratteristiche meccaniche dei materiali costituenti i diversi elementi; per esempio aumento della deformabilità dello strato di supporto oppure altro tipo di massetto, sigillante o adesivo. La richiesta dello studio del comportamento meccanico di rivestimenti ceramici deriva dal fatto che sul mercato si stanno sviluppando delle piastrelle ceramiche molto sottili e di dimensioni sempre più grandi (come ad esempio la tecnologia System-laminam), di cui non si conosce a pieno il comportamento meccanico. Il CCB cerca di definire una norma nuova e specifica per questo tipo di lastre, in cui sono indicati metodi di misura adatti e requisiti di accettabilità appropriati per lastre ceramiche sottili.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L'obiettivo del lavoro è quello di approfondire la conoscenza delle capacità di prestazione strutturale di elementi strutturali realizzate in blocco cassero soggette ad azioni di pressoflessione e taglio attraverso la creazione di un modello numerico che sia ben in grado di replicare i risultati ottenuti a livello sperimentale.