224 resultados para EPILEPSIA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Contexto: É descrita uma síndrome congênita rara e suas manifestações típicas visando seu diagnóstico precoce. Descrição do caso: Pacientedo sexo feminino, com 15 anos de idade, com glaucoma congênito em acompanhamento pelo Serviço de Oftalmologia da UniversidadeEstadual Paulista (Unesp) foi encaminhada ao Serviço de Dermatologia com um ano de idade devido a manchas eritêmato-violáceasextensas distribuídas nos dois terços superiores da hemiface esquerda e em outras localidades do corpo desde o nascimento. A mãerelatava convulsões desde um ano e atraso do desenvolvimento neuropsicomotor. Nos antecedentes familiares, negava casos semelhantes.O diagnóstico da Síndrome de Sturge-Weber foi estabelecido pelo quadro clínico característico e pelos exames complementares quedemonstraram, no sistema nervoso central, atrofia e calcificação corticais, além de alterações oftalmológicas como glaucoma e buftalmo.Discussão: A síndrome de Sturge-Weber ocorre em 1 a cada 20.000 a 50.000 nascidos vivos e é caracterizada por malformações vascularesmanifestadas por manchas eritêmato-violáceas, mais conhecidas como manchas vinho do Porto , localizadas no território do ramooftálmico do nervo trigêmeo, com acometimento neurológico e possível acometimento ocular. O prognóstico depende das complicaçõesneurológicas, as quais não guardam relação com a extensão das lesões cutâneas. Conclusões: Relata-se afecção rara, cujo diagnósticoprecoce direciona o acompanhamento multidisciplinar.
Resumo:
Objective The ketogenic diet is used as a therapeutic alternative for the treatment of epilepsy in patients with refractory epilepsy. It simulates biochemical changes typical of fasting. The present study verified the nutritional impact of the ketogenic diet on children with refractory epilepsy. Methods Nutritional status data (dietary, biochemical and anthropometric measurements), seizure frequency, and adverse events were collected from the medical records and during outpatient clinic visits of children over a period of 36 months. Results Of the 29 children who initiated the ketogenic diet, 75.8% presented fewer seizures after one month of treatment. After six months, 48.3% of the patients had at least a 90.0% decrease in seizure frequency, and 50.0% of these patients presented total seizure remission. At 12 months, eight patients continued to show positive results, and seven of these children remained on the ketogenic diet for 24 months. There was an improvement of the nutritional status at 24 months, especially in terms of weight, which culminated with the recovery of proper weight-for-height. There were no significant changes in biochemical indices (total cholesterol and components, triglycerides, albumin, total protein, creatinine, glycemia, serum aspartate transaminase and serum alanine transaminase). Serum cholesterol levels increased significantly in the first month, fell in the following six months, and remained within the normal limits thereafter. Conclusion In conclusion, patients on the classic ketogenic diet for at least 24 months gained weight. Moreover, approximately one third of the patients achieved significant reduction in seizure frequency, and some patients achieved total remission.
Resumo:
Purpose: Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese-enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well-established pilocarpine (Pilo) rat model of temporal lobe epilepsy (TLE). Methods: To modulate MFS, cycloheximide (CHX), a protein synthesis inhibitor, was coadministered with Pilo in a subgroup of animals. In vivo MEMRI was performed 3 months after induction of SE and compared to the neo-Timm histologic labeling of zinc mossy fiber terminals in the dentate gyrus (DG). Key Findings: Chronically epileptic rats displaying MFS as detected by neo-Timm histology had a hyperintense MEMRI signal in the DG, whereas chronically epileptic animals that did not display MFS had minimal MEMRI signal enhancement compared to nonepileptic control animals. A strong correlation (r = 0.81, p < 0.001) was found between MEMRI signal enhancement and MFS. Significance: This study shows that MEMRI is an attractive noninvasive method for detection of mossy fiber sprouting in vivo and can be used as an evaluation tool in testing therapeutic approaches to manage chronic epilepsy.
Resumo:
Pathology studies in epilepsy patients bring useful information for comprehending the physiopathology of various forms of epilepsy, as well as aspects related to response to treatment and long-term prognosis. These studies are usually restricted to surgical specimens obtained from patients with refractory focal epilepsies. Therefore, most of them pertain to temporal lobe epilepsy (TLE) with mesial temporal sclerosis (MTS) and malformations of cortical development (MCD), thus providing information of a selected group of patients and restricted regions of the brain. Postmortem whole brain studies are rarely performed in epilepsy patients, however they may provide extensive information on brain pathology, allowing the analysis of areas beyond the putative epileptogenic zone. In this article, we reviewed pathology studies performed in epilepsy patients with emphasis on neuropathological findings in TLE with MTS and MCD. Furthermore, we reviewed data from postmortem studies and discussed the importance of performing these studies in epilepsy populations.
Resumo:
It is clear that sudden unexpected death in epilepsy (SUDEP) is mainly a problem for people with refractory epilepsy, but our understanding of the best way to its prevention is still incomplete. Although the pharmacological treatments available for epilepsies have expanded, some antiepileptic drugs are still limited in clinical efficacy. In the present paper, we described an experience with vagus nerve stimulation (VNS) treatment by opening space and providing the opportunity to implement effective preventative maps to reduce the incidence of SUDEP in children and adolescents with refractory epilepsy.
Resumo:
OBJECTIVE: Mounting evidence suggests that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological and connectivity changes might contribute to the development of psychosis and to the potential neurobiological mechanisms that cause schizophrenia-like psychosis in TLE patients. METHODS: In this review, clinical and neuropathological findings, especially brain circuitry of the limbic system, were examined together to enhance our understanding of the association between TLE and psychosis. Finally, the importance of animal models in epilepsy and psychiatric disorders was discussed. CONCLUSIONS: TLE and psychiatric symptoms coexist more frequently than chance would predict. Damage and deregulation among critical anatomical regions, such as the hippocampus, amygdala, thalamus, and the temporal, frontal and cingulate cortices, might predispose TLE brains to psychosis. Studies of the effects of kindling and injection of neuroactive substances on behavior and electrophysiological patterns may offer a model of how limbic seizures in humans increase the vulnerability of TLE patients to psychiatric symptoms.
Resumo:
In the central nervous system, zinc is released along with glutamate during neurotransmission and, in excess, can promote neuronal death. Experimental studies have shown that metallothioneins I/II (MT-I/II), which chelate free zinc, can affect seizures and reduce neuronal death after status epilepticus. Our aim was to evaluate the expression of MT-I/II in the hippocampus of patients with temporal lobe epilepsy (TLE). Hippocampi from patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) were evaluated for expression of MT-I/II and for neuronal, astroglial, and microglial populations. Compared to control cases, MTLE group displayed widespread increase in MT-I/II expression, astrogliosis and reduced neuronal population. MT-I/II levels did not correlate with any clinical variables, but patients with secondary generalized seizures (SGS) had less MT-I/II than patients without SGS. In conclusion, MT-I/II expression was increased in hippocampi from MTLE patients and our data suggest that it may be associated with different seizure spread patterns.
Resumo:
Epilepsy is the most common serious neurological disorder worldwide. Approximately 70% of patients with epilepsy have their seizures controlled by clinical and pharmacological treatment. This research evaluated the possible influence of interchangeability among therapeutic equivalents of LTG on the clinical condition and quality of life of refractory epileptic patients. The study was divided into three periods of 42 days, and an equivalent therapeutic LTG randomly dispensed for each period (two similars - formulations A and B, and the reference product - formulation C). The mean dose of LTG was 5.5 mg/kg/day. The presence of side effects tends to have a greater deleterious effect on quality of life of refractory epileptics compared to variations in number of seizures or changes in plasma concentrations. The results showed that independently of the drug prescribed, interchangeability among therapeutic equivalents can negatively impact epilepsy control.
Resumo:
PURPOSE: Assessment of language dominance with functional magnetic resonance imaging (fMRI) and neuropsychological evaluation is often used prior to epilepsy surgery. This study explores whether language lateralization and cognitive performance are systematically related in young patients with focal epilepsy. METHODS: Language fMRI and neuropsychological data (language, visuospatial functions, and memory) of 40 patients (7-18 years of age) with unilateral, refractory focal epilepsy in temporal and/or frontal areas of the left (n = 23) or right hemisphere (n = 17) were analyzed. fMRI data of 18 healthy controls (7-18 years) served as a normative sample. A laterality index was computed to determine the lateralization of activation in three regions of interest (frontal, parietal, and temporal). RESULTS: Atypical language lateralization was demonstrated in 12 (30%) of 40 patients. A correlation between language lateralization and verbal memory performance occurred in patients with left-sided epilepsy over all three regions of interest, with bilateral or right-sided language lateralization being correlated with better verbal memory performance (Word Pairs Recall: frontal r = -0.4, p = 0.016; parietal r = -0.4, p = 0.043; temporal r = -0.4, p = 0.041). Verbal memory performance made the largest contribution to language lateralization, whereas handedness and side of seizures did not contribute to the variance in language lateralization. DISCUSSION: This finding reflects the association between neocortical language and hippocampal memory regions in patients with left-sided epilepsy. Atypical language lateralization is advantageous for verbal memory performance, presumably a result of transfer of verbal memory function. In children with focal epilepsy, verbal memory performance provides a better idea of language lateralization than handedness and side of epilepsy and lesion.
Resumo:
Epileptic seizures typically reveal a high degree of stereotypy, that is, for an individual patient they are characterized by an ordered and predictable sequence of symptoms and signs with typically little variability. Stereotypy implies that ictal neuronal dynamics might have deterministic characteristics, presumably most pronounced in the ictogenic parts of the brain, which may provide diagnostically and therapeutically important information. Therefore the goal of our study was to search for indications of determinism in periictal intracranial electroencephalography (EEG) studies recorded from patients with pharmacoresistent epilepsy.
Resumo:
Epilepsies have a highly heterogeneous background with a strong genetic contribution. The variety of unspecific and overlapping syndromic and nonsyndromic phenotypes often hampers a clear clinical diagnosis and prevents straightforward genetic testing. Knowing the genetic basis of a patient's epilepsy can be valuable not only for diagnosis but also for guiding treatment and estimating recurrence risks.
Resumo:
Epileptic seizures are associated with a dysregulation of electrical brain activity on many different spatial scales. To better understand the dynamics of epileptic seizures, that is, how the seizures initiate, propagate, and terminate, it is important to consider changes of electrical brain activity on different spatial scales. Herein we set out to analyze periictal electrical brain activity on comparatively small and large spatial scales by assessing changes in single intracranial electroencephalography (EEG) signals and of averaged interdependences of pairs of EEG signals.
Resumo:
The impact of interictal epileptic activity (IEA) on driving is a rarely investigated issue. We analyzed the impact of IEA on reaction time in a pilot study. Reactions to simple visual stimuli (light flash) in the Flash test or complex visual stimuli (obstacle on a road) in a modified car driving computer game, the Steer Clear, were measured during IEA bursts and unremarkable electroencephalography (EEG) periods. Individual epilepsy patients showed slower reaction times (RTs) during generalized IEA compared to RTs during unremarkable EEG periods. RT differences were approximately 300 ms (p < 0.001) in the Flash test and approximately 200 ms (p < 0.001) in the Steer Clear. Prior work suggested that RT differences >100 ms may become clinically relevant. This occurred in 40% of patients in the Flash test and in up to 50% in the Steer Clear. When RT were pooled, mean RT differences were 157 ms in the Flash test (p < 0.0001) and 116 ms in the Steer Clear (p < 0.0001). Generalized IEA of short duration seems to impair brain function, that is, the ability to react. The reaction-time EEG could be used routinely to assess driving ability.
Resumo:
Synapses of hippocampal neurons play important roles in learning and memory processes and are involved in aberrant hippocampal function in temporal lobe epilepsy. Major neuronal types in the hippocampus as well as their input and output synapses are well known, but it has remained an open question to what extent conventional electron microscopy (EM) has provided us with the real appearance of synaptic fine structure under in vivo conditions. There is reason to assume that conventional aldehyde fixation and dehydration lead to protein denaturation and tissue shrinkage, likely associated with the occurrence of artifacts. However, realistic fine-structural data of synapses are required for our understanding of the transmission process and for its simulation. Here, we used high-pressure freezing and cryosubstitution of hippocampal tissue that was not subjected to aldehyde fixation and dehydration in ethanol to monitor the fine structure of an identified synapse in the hippocampal CA3 region, that is, the synapse between granule cell axons, the mossy fibers, and the proximal dendrites of CA3 pyramidal neurons. Our results showed that high-pressure freezing nicely preserved ultrastructural detail of this particular synapse and allowed us to study rapid structural changes associated with synaptic plasticity.