935 resultados para ENHANCED STRUCTURE ELUCIDATION
Resumo:
X-ray diffraction studies on single crystals of a few viruses have led to the elucidation of their three dimensional structure at near atomic resolution. Both the tertiary structure of the coat protein subunit and the quaternary morganization of the icosahedral capsid in these viruses are remarkably similar. These studies have led to a critical re-examination of the structural principles in the architecture of isometric viruses and suggestions of alternative mechanisms of assembly. Apart from their role in the assembly of the virus particle, the coat proteins of certian viruses have been shown to inhibit the replication of the cognate RNA leading to cross-protection. The coat protein amino acid sequence and the genomic sequence of several spherical plant RNA viruses have been determined in the last decade. Experimental data on the mechanisms of uncoating, gene expression and replication of several classes of viruses have also become available. The function of the non-structural proteins of some viruses have been determined. This rapid progress has provided a wealth of information on several key steps in the life cycle of RNA viruses. The function of the viral coat protein, capsid architecture, assembly and disassembly and replication of isometric RNA plant viruses are discussed in the light of this accumulated knowledge.
Resumo:
In this paper we explore the enhancement of solubility in a mechanically driven immiscible system experimentally using a mixture of Ag and Bi powders corresponding to a composition of Ag-5.1 at.% Bi. Increase in solubility can be correlated with the combination of sizes of both Ag and Bi at the nanometric scale. It is shown that complete solid solution of Ag-5.1 at.% Bi forms when the respective sizes of :Bi and Ag exceed 13 and 8 nm respectively. We have carried out a thermodynamic analysis of the size- and strain-dependent free energy landscape and compared the results to the initial mixture of microsized particles to rationalize the evolution of Ag solid solution. The agreement indicates that the emerging driving force for the formation of solid solution is primarily due to size reduction rather than the enhanced kinetics of mass transport due to mechanical driving. (c) 2011 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
Resumo:
Mononuclear copper(II) complexes of tri- and tetra-dentate tripodal ligands containing phenolic hydroxyl and benzimidazole or pyridine groups have been isolated. They are of the type (CuL(X)].nH2O, [CuL(H2O)]X.nH2O or [CuL].nH2O where X = Cl-, ClO4-, N3- or NCS- and n = 0-4. The electronic spectra of all the complexes exhibit a broad absorption band around 14000 cm-1 and the polycrystalline as well as the frozen-solution EPR spectra are axial, indicating square-based geometries. The crystal structure of [CuL(Cl)] [HL = (2-hydroxy-5-nitrobenzyl)bis(2-pyridyl-methyl)amine] revealed a square-pyramidal geometry around Cu(II). The mononuclear complex crystallises in the triclinic space group P1BAR with a = 6.938(1), b = 11.782(6), c = 12.678(3) angstrom and alpha = 114.56(3), beta = 92.70(2), gamma = 95.36(2)-degrees. The co-ordination plane is comprised of one tertiary amine and two pyridine nitrogens and a chloride ion. The phenolate ion unusually occupies the axial site, possibly due to the electron-withdrawing p-nitro group. The enhanced pi delocalisation involving the p-nitrophenolate donor elevates the E1/2 values. The spectral and electrochemical results suggest the order of donor strength as nitrophenolate < pyridine < benzimidazole in the tridentate and nitrophenolate < benzimidazole < pyridine in the tetradentate ligand complexes.
Resumo:
Earlier we have demonstrated the presence of internal ribosome entry site (IRES) within tumor suppressor p53 mRNA. Here we have mapped the putative secondary structure of p53-IRES RNA using information from chemical probing and nuclease mapping experiments. Additionally, the secondary structure of the IRES element of the wild-type RNA was compared with cancer-derived silent mutant p53 RNAs. These mutations might result in the conformational alterations of p53-IRES RNAs. The results also indicate decreased IRES activities of the mutants as compared to wild-type RNA. Further, it was observed that some of the cytoplasmic trans-acting factors, critical for enhancing IRES function, were unable to bind mutant RNAs as efficiently as to wild-type. Our results suggest that hnRNP C1/C2 binds to p53-IRES and siRNA mediated partial silencing of hnRNP C1/C2 showed appreciable decrease in IRES function and consequent decrease in the level of the corresponding p53 isoform. Interestingly mutant p53 IRES showed lesser binding with hnRNP C1/C2 protein. Finally, upon doxorubicin treatment, the mutant RNAs were unable to show enhanced p53 synthesis to similar extent compared to wild type. Taken together, these observations suggest that mutations occurring in the p53 IRES might have profound implications for de-regulation of its expression and activity.
Resumo:
The active site lysine residue, K256, involved in Schiffs base linkage with pyridoxal-5'-phosphate (PEP) in sheep liver recombinant serine hydroxymethyltransferase (rSHMT) was changed to glutamine or arginine by site-directed mutagenesis. The purified K256Q and K256R SHMTs had less than 0.1% of catalytic activity with serine and H(4)folate as substrates compared to rSHMT. The mutant enzymes also failed to exhibit the characteristic visible absorbance spectrum (lambda(max) 425 nm) and did not produce the quinonoid intermediate (lambda(max) 495 nm) upon the addition of glycine and H(4)folate. The mutant enzymes were unable to catalyze aldol cleavage of beta-phenylserine and transamination of D-alanine. These results suggested that the mutation of the lysine had resulted in the inability of the enzyme to bind to the cofactor. Therefore, the K256Q SHMT was isolated as a dimer and the K256R SHMT as a mixture of dimers and tetramers which were converted to dimers slowly. On the other hand, rSHMT was stable as a tetramer for several months, further confirming the role of PLP in maintenance of oligomeric structure. The mutant enzymes also failed to exhibit the increased thermal stability upon the addition of serine, normally observed with rSHMT. The enhanced thermal stability has been attributed to a change in conformation of the enzyme from open to closed form leading to reaction specificity. The mutant enzymes were unable to undergo this conformational change probably because of the absence of bound cofactor.
Resumo:
This paper reports the TR3 spectral studies on perfluorinated organic systems with the objective to understand the influence of perfluorination on the excited states. We have recorded the TR3 spectra and Raman excitation profiles of the triplet excited states of decafluorobenzophenone and fluoranil. It is found that the influence of perfluorination is more pronounced in the triplet excited state than the ground state and thus leads to enhanced reactivity for perfluorinated compounds through larger structural distortions.
Resumo:
Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007-2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by similar to 90 and similar to 200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3-5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.
Resumo:
Faceted ZnO nanorods with different aspect ratios were synthesized by a solvothermal method by tuning the reaction time. Increased reaction leads to the formation of high aspect ratio ZnO nanorods largely bound by the prism planes. The high aspect ratio rods showed significantly higher visible light photocatalytic activity when compared to the lower aspect ratio structures. It is proposed that the higher activity is due to better charge separation in the elongated 1D structure. In addition, the fraction of unsaturated Zn2+ sites is higher on the {10 (1) over bar0} facets, leading to better adsorption of oxygen-containing species. These species enhance the production of reactive radicals that are responsible for photodegradation. The photocurrent for these ZnO nanostructures under solar light was measured and a direct correlation between photocurrent and aspect ratio was observed. Since the underlying mechanisms for photodegradation and photocurrent generation are directly related to the efficiency of electron-hole creation and separation, this observation corroborates that the charge separation processes are indeed enhanced in the high aspect ratio structures. The efficiency of photoconduction (electron-hole pair separation) could be further improved by attaching Au nanoparticles on ZnO, which can act as a sink for the electrons. This heterostructure exhibits a high chemisorption of oxygen, which facilitates the production of highly reactive radicals contributing to the high photoreactivity. The suggested mechanisms are applicable to other n-type semiconductor nanostructures with important implications for applications relating to energy and the environment.
Resumo:
Graphene nanosheet (GNS) was synthesized by using microwave plasma enhanced CVD on copper substrate and followed by evaporation of tin metal. Scanning and transmission electron microscopy show that nanosize Sn particles are well embedded into the GNS matrix. The composition, structure, and electrochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and chrono-potentiometry. The first discharge capacity of as-deposited and annealed SnGNS obtained was 1551 mA h/g and 975 mA h/g, respectively. The anodes show excellent cyclic performance and coulombic efficiency.
Resumo:
The widely conserved omega subunit encoded by rpoZ is the smallest subunit of Escherichia coli RNA polymerase (RNAP) but is dispensable for bacterial growth. Function of omega is known to be substituted by GroEL in omega-null strain, which thus does not exhibit a discernable phenotype. In this work, we report isolation of omega variants whose expression in vivo leads to a dominant lethal phenotype. Studies show that in contrast to omega, which is largely unstructured, omega mutants display substantial acquisition of secondary structure. By detailed study with one of the mutants, omega(6) bearing N60D substitution, the mechanism of lethality has been deciphered. Biochemical analysis reveals that omega(6) binds to beta ` subunit in vitro with greater affinity than that of omega. The reconstituted RNAP holoenzyme in the presence of omega(6) in vitro is defective in transcription initiation. Formation of a faulty RNAP in the presence of mutant omega results in death of the cell. Furthermore, lethality of omega(6) is relieved in cells expressing the rpoC2112 allele encoding beta ` (2112), a variant beta ` bearing Y457S substitution, immediately adjacent to the beta ` catalytic center. Our results suggest that the enhanced omega(6)-beta ` interaction may perturb the plasticity of the RNAP active center, implicating a role for omega and its flexible state.
Resumo:
Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Chemical functionalization of various hydrocarbons, such as coronene, corannulene, and so forth, shows good promise in electronics applications because of their tunable optoelectronic properties. By using quantum chemical calculations, we have investigated the changes in the corannulene buckybowl structure, which greatly affect its electronic and optical properties when functionalized with different electron-withdrawing imide groups. We find that the chemical nature and position of functional groups strongly regulate the stacking geometry, -stacking interactions, and electronic structure. Herein, a range of optoelectronic properties and structure-property relationships of various imide-functionalized corannulenes are explored and rationalized in detail. In terms of carrier mobility, we find that the functionalization strongly affects the reorganization energy of corannulene, while the enhanced stacking improves hopping integrals, favoring the carrier mobility of crystals of pentafluorophenylcorannulene-5-monoimide. The study shows a host of emerging optoelectronic properties and enhancements in the charge-transport characteristics of functionalized corannulene, which may find possible semiconductor and electronics applications.
Resumo:
Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone-Wales defects to show the largest enhancement with respect to pristine graphene (similar to 20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are, similar, although CO2 binding is generally stronger by similar to 4 to 5 kJ mol(-1). However, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gasselective sensors.
Resumo:
Elucidation of possible pathways between folded (native) and unfolded states of a protein is a challenging task, as the intermediates are often hard to detect. Here, we alter the solvent environment in a controlled manner by choosing two different cosolvents of water, urea, and dimethyl sulfoxide (DMSO) and study unfolding of four different proteins to understand the respective sequence of melting by computer simulation methods. We indeed find interesting differences in the sequence of melting of alpha helices and beta sheets in these two solvents. For example, in 8 M urea solution, beta-sheet parts of a protein are found to unfold preferentially, followed by the unfolding of alpha helices. In contrast, 8 M DMSO solution unfolds alpha helices first, followed by the separation of beta sheets for the majority of proteins. Sequence of unfolding events in four different alpha/beta proteins and also in chicken villin head piece (HP-36) both in urea and DMSO solutions demonstrate that the unfolding pathways are determined jointly by relative exposure of polar and nonpolar residues of a protein and the mode of molecular action of a solvent on that protein.
Resumo:
2-Phenylthiazolin-5-one (5, a thioazlactone) condenses with various aldehydes in the presence of the mild base Mn(II) acetate as catalyst in CH2Cl2 solution. This leads to the corresponding Erlenmeyer reaction products (6) in excellent yields in the case of aromatic aldehydes and moderate yields in others. The mildness of the reaction conditions is apparently enabled by the aromaticity of the (putative) intermediate thiazolone anion. The structure and stereochemistry (Z) of the product derived from i-BuCHO was confirmed by single crystal X-ray diffraction. This study overcomes key limitations of the classical Erlenmeyer synthesis and also introduces the relatively nontoxic Mn(II) acetate as a reagent in heterocyclic chemistry.