954 resultados para ECOSYSTEM PROCESSES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The water-heat transfer process between land and atmosphere in Haibei alpine meadow area has been systematically observed. A multi-layer coupling model for land-atmosphere interaction was presented with special attention paid to the moisture transfer in leaf stomata under unsaturated condition. A profound investigation on the physical process of turbulent transfer inside the vegetation has been performed with a revised formula of water absorption for root system. The present model facilitates the study of vertically distributed physical variables in detail. Numerical simulation was conducted according to the transfer process of Kinesia humility meadow in the area of Haibei Alpine Meadow Ecosystem Station, CAS. The calculated results agree well with observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem goods and services provided by estuarine and near coastal regions are being increasingly recognised for their immense value, as is the biodiversity in these areas and these near coastal communities have been identified as sentinels of climate change also. Population structure and reproductive biology of two bivalve molluscs, Cerastoderma edule and, Mytilus edulis were assessed at two study sites over a 16-month study period. Following an anomalously harsh winter, advancement of spawning time was observed in both species. Throughout Ireland and Europe the cockle has experienced mass surfacings in geographically distinct regions, and a concurrent study of cockles was undertaken to explore this phenomenon. Surfaced and buried cockles were collected on a monthly basis and their health compared. Age was highlighted as a source of variation between dying and healthy animals with a parasite threshold being reached possibly around age three. Local factors dominated when looking at the cause of surfacing at each site. The health of mussels was explored too on a temporal and seasonal basis in an attempt to assess what constitutes a healthy organism. In essence external drivers can tip the balance between “acceptable” levels of infection where the mussel can still function physiologically and “unacceptable” where prevalence and intensity of infection can result in physiological impairment at the individual and population level. Synecological studies of intertidal ecosystems are lacking, so all bivalves encountered during the sampling were assessed in terms of population structure, reproduction, and health. It became clear, that some parasites might specialize on one host species while others are not so specific in host choice. Furthermore the population genetics of the cockle, its parasite Meiogymnophallus minutus, and its hyperparasite Unikaryon legeri were examined too. A small nucleotide polymorphism was detected upon comparison of Ireland and Morocco.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A focus on ecosystem services (ES) is seen as a means for improving decisionmaking. In the research to date, the valuation of the material contributions of ecosystems to human well-being has been emphasized, with less attention to important cultural ES and nonmaterial values. This gap persists because there is no commonly accepted framework for eliciting less tangible values, characterizing their changes, and including them alongside other services in decisionmaking. Here, we develop such a framework for ES research and practice, addressing three challenges: (1) Nonmaterial values are ill suited to characterization using monetary methods; (2) it is difficult to unequivocally link particular changes in socioecological systems to particular changes in cultural benefits; and (3) cultural benefits are associated with many services, not just cultural ES. There is no magic bullet, but our framework may facilitate fuller and more socially acceptable integrations of ES information into planning and management. © 2012 by American Institute of Biological Sciences. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer-algae chemostats; alewife-zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife-zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regular landscape patterning arises from spatially-dependent feedbacks, and can undergo catastrophic loss in response to changing landscape drivers. The central Everglades (Florida, USA) historically exhibited regular, linear, flow-parallel orientation of high-elevation sawgrass ridges and low-elevation sloughs that has degraded due to hydrologic modification. In this study, we use a meta-ecosystem approach to model a mechanism for the establishment, persistence, and loss of this landscape. The discharge competence (or self-organizing canal) hypothesis assumes non-linear relationships between peat accretion and water depth, and describes flow-dependent feedbacks of microtopography on water depth. Closed-form model solutions demonstrate that 1) this mechanism can produce spontaneous divergence of local elevation; 2) divergent and homogenous states can exhibit global bi-stability; and 3) feedbacks that produce divergence act anisotropically. Thus, discharge competence and non-linear peat accretion dynamics may explain the establishment, persistence, and loss of landscape pattern, even in the absence of other spatial feedbacks. Our model provides specific, testable predictions that may allow discrimination between the self-organizing canal hypotheses and competing explanations. The potential for global bi-stability suggested by our model suggests that hydrologic restoration may not re-initiate spontaneous pattern establishment, particularly where distinct soil elevation modes have been lost. As a result, we recommend that management efforts should prioritize maintenance of historic hydroperiods in areas of conserved pattern over restoration of hydrologic regimes in degraded regions. This study illustrates the value of simple meta-ecosystem models for investigation of spatial processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The EU-based industry for non-leisure games is an emerging business. As such it is still fragmented and needs to achieve critical mass to compete globally. Nevertheless its growth potential is widely recognized. To become competitive the relevant applied gaming communities and SMEs require support by fostering the generation of innovation potential. The European project Realizing an Applied Gaming Ecosystem (RAGE) is aiming at supporting this challenge. RAGE will help by making available an interoperable set of advanced technology assets, tuned to applied gaming, as well as proven practices of using asset-based applied games in various real-world contexts, and finally a centralized access to a wide range of applied gaming software modules, services and related document, media, and educational resources within an online community portal called the RAGE Ecosystem. It is based on an integrational, user-centered approach of Knowledge Management and Innovation Processes in the shape of a service-based implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An inverse food-web model for the western Antarctic Peninsula (WAP) pelagic food web was constrained with data from Palmer Long Term Ecological Research (PAL-LTER) project annual austral summer sampling cruises. Model solutions were generated for 2 regions with Adelie penguin Pygoscelis adeliae colonies presenting different population trends (a northern and a southern colony) for a 12 yr period (1995-2006). Counter to the standard paradigm, comparisons of carbon flow through bacteria, microzooplankton, and krill showed that the diatom-krill-top predator food chain is not the dominant pathway for organic carbon exchanges. The food web is more complex, including significant contributions by microzooplankton and the microbial loop. Using both inverse model results and network indices, it appears that in the northern WAP the food web is dominated by the microbial food web, with a temporal trend toward its increasing importance. The dominant pathway for the southern WAP food web varies from year to year, with no detectable temporal trend toward dominance of microzooplankton versus krill. In addition, sensitivity analyses indicated that the northern colony of Adelie penguins, whose population size has been declining over the past 35 yr, appears to have sufficient krill during summer to sustain its basic metabolic needs and rear chicks, suggesting the importance of other processes in regulating the Adelie population decline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that globally declining fisheries catch trends cannot be explained by random processes and are consistent with declining stock abundance trends. Future projections are inherently uncertain but may provide a benchmark against which to assess the effectiveness of conservation measures. Marine reserves and fisheries closures are among those measures and can be equally effective in tropical and temperate areas—but must be combined with catch-, effort-, and gear restrictions to meet global conservation objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbour processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In this manuscript we aim to provide a foundation for informed conservation and management of the deep sea by summarizing the important role of the deep sea in society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key challenge to progressing our understanding of biodiversity’s role in the sustenance of ecosystem function is the extrapolation of the results of two decades of dedicated empirical research to regional, global and future landscapes. Ecosystem models provide a platform for this progression, potentially offering a holistic view of ecosystems where, guided by the mechanistic understanding of processes and their connection to the environment and biota, large-scale questions can be investigated. While the benefits of depicting biodiversity in such models are widely recognized, its application is limited by difficulties in the transfer of knowledge from small process oriented ecology into macro-scale modelling. Here, we build on previous work, breaking down key challenges of that knowledge transfer into a tangible framework, highlighting successful strategies that both modelling and ecology communities have developed to better interact with one another. We use a benthic and a pelagic case-study to illustrate how aspects of the links between biodiversity and ecosystem process have been depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation and model development. We hope that this framework may help future interactions between biodiversity researchers and model developers by highlighting concrete solutions to common problems, and in this way contribute to the advance of the mechanistic understanding of the role of biodiversity in marine (and terrestrial) ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a multitude of ecosystem service classifications available within the literature, each with its own advantages and drawbacks. Elements of them have been used to tailor a generic ecosystem service classification for the marine environment and then for a case study site within the North Sea: the Dogger Bank. Indicators for each of the ecosystem services, deemed relevant to the case study site, were identified. Each indicator was then assessed against a set of agreed criteria to ensure its relevance and applicability to environmental management. This paper identifies the need to distinguish between indicators of ecosystem services that are entirely ecological in nature (and largely reveal the potential of an ecosystem to provide ecosystem services), indicators for the ecological processes contributing to the delivery of these services, and indicators of benefits that reveal the realized human use or enjoyment of an ecosystem service. It highlights some of the difficulties faced in selecting meaningful indicators, such as problems of specificity, spatial disconnect and the considerable uncertainty about marine species, habitats and the processes, functions and services they contribute to.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing demand for environmental assessments of the marine environment to include ecosystem function. However, existing schemes are predominantly based on taxonomic (i.e. structural) measures of biodiversity. Biodiversity and Ecosystem Function (BEF) relationships are suggested to provide a mechanism for converting taxonomic information into surrogates of ecosystem function. This review assesses the evidence for marine BEF relationships and their potential to be used in practical monitoring applications (i.e. operationalized). Five key requirements were identified for the practical application of BEF relationships: (1) a complete understanding of strength, direction and prevalence of marine BEF relationships, (2) an understanding of which biological components are influential within specific BEF relationships, (3) the biodiversity of the selected biological components can be measured easily, (4) the ecological mechanisms that are the most important for generating marine BEF relationships, i.e. identity effects or complementarity, are known and (5) the proportion of the overall functional variance is explained by biodiversity, and hence BEF relationships, has been established. Numerous positive and some negative BEF relationships were found within the literature, although many reproduced poorly the natural species richness, trophic structures or multiple functions of real ecosystems (requirement 1). Null relationships were also reported. The consistency of the positive and negative relationships was often low that compromised the ability to generalize BEF relationships and confident application of BEF within marine monitoring. Equally, some biological components and functions have received little or no investigation. Expert judgement was used to attribute biological components using spatial extent, presence and functional rate criteria (requirement 2). This approach highlighted the main biological components contributing the most to specific ecosystem functions, and that many of the particularly influential components were found to have received the least amount of research attention. The need for biodiversity to be measureable (requirement 3) is possible for most biological components although difficult within the functionally important microbes. Identity effects underpinned most marine BEF relationships (requirement 4). As such, processes that translated structural biodiversity measures into functional diversity were found to generate better BEF relationships. The analysis of the contribution made by biodiversity, over abiotic influences, to the total expression of a particular ecosystem function was rarely measured or considered (requirement 5). Hence it is not possible to determine the overall importance of BEF relationships within the total ecosystem functioning observed. In the few studies where abiotic factors had been considered, it was clear that these modified BEF relationships and have their own direct influence on functional rate. Based on the five requirements, the information required for immediate ‘operationalization’ of BEF relationships within marine functional monitoring is lacking. However, the concept of BEF inclusion within practical monitoring applications, supported by ecological modelling, shows promise for providing surrogate indicators of functioning.