963 resultados para EASTERN MEDITERRANEAN SEA
Resumo:
A land based mesocosm experiment focusing on the study of the simultaneous impact of warming and acidification on the planktonic food web of the Eastern Mediterranean took place in August-September 2013 at the mesocosm facilities of HCMR in Crete (CRETACOSMOS). Two different pCO2 (present day and predicted for year 2100) were applied in triplicate mesocosms of 3 m**3. This was tested in two different temperatures (ambient seawater T and ambient T plus 3°C). Twelve mesocosms in total were incubated in two large concrete tanks. Temperature was controlled by sophisticated, automated systems. A large variety of chemical, biological and biochemical variables were studied, including salinity, temperature, light and alkalinity measurements, inorganic and organic, particulate and dissolved, nutrient analyses, biological stock (Chla concentration, enumeration and community composition of microbial, phyto- and zooplankton organisms) and rate (primary, bacterial, viral production, copepod egg production, zooplankton grazing, N2 fixation, P uptake) measurements, bacterial DNA extraction and phytoplankton transcriptomics, calcifiers analyses. Twenty three scientists from 6 Institutes and 5 countries participated in this experiment.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Toonneel des oorlogs in't zuider deel van Europa, door Carel Allard = Theatre de la guerre dans l'Europe meridionale, par Charles Allard. It was published by C. Allard in 1705. Scale [ca. 1:6,800,000]. Covers a portion of Europe and the Mediterranean Sea region. This layer is image 2 of 2 total images of the two sheet source map, representing the eastern portion of the map. Map in Dutch and French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the World Miller Cylindrical projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
The paper builds predictive scenarios for the agricultural sector of eleven southern and eastern Mediterranean countries (SEMCs), namely Algeria, Egypt, Israel, Jordan, Lebanon, Libya, Morocco, Palestine, Syria, Tunisia and Turkey. First, it assesses the performance trends of the SEMCs’ agricultural sector, with a focus on production, consumption and trade patterns, incentives, trade protection policies and trade relations with the EU, productivity dynamics and their determinants. Second, it presents four scenarios based on the main value chains of the SEMCs’ agriculture sector: animal products, fruit and vegetables, sugar and edible oils, cereals, fish and other sea products. The four scenarios are: business as usual, Mediterranean – one global player, the EU-Mediterranean area under threat and the EU and SEMCs as regional players on the global stage.
Resumo:
The Mediterranean Sea is a partillay isolated ocean where excess evaporation over precipitation results in large east to west gradients in temperature and salinity. Recent planktonic foraminiferal distributions have been examined in 66 surface sediment samples from the Mediterranean Sea. In addition to mapping the frequency distribution of 16 species, the faunal data has been subjected to cluster analysis, factor analysis and species diversity analysis. The clustering of species yields assemblages that are clearly temperature related. A warm assemblage contains both tropical and subtropical elements, while the cool assemblage can be subdivided into cool-subtropical, transitional and polar-subpolar groupings. Factor analysis is used to delineate the geographic distribution of four faunal assemblages. Factor 1 is a tropical-subtropical assemblage dominated by Globigerinoiden ruber. It has its highest values in the warmer eastern basin. Transitional species (Globorotalia inflata and Globigerina bulloides) dominate factor 2 with highest values occurring in the cooler western basin. Factor 3 reflects the distribution of Neogloboquadrina dutertrei and is considered to be salinity dependent. Subpolar species dominate factor 4 (Neoglobuquadrina pachyderma and G. bulloides), with highest values occurring in the northern part of the western basin where cold bottom water is presently being formed. The Shannon-Weiner index of species diversity shows that high diversity exists over much of the western basin and immediately east of the Strait of Sicily. This region is marked by equitable environmental conditions and relatively even distribution of individuals among the species. Conversely, in areas where temperature and salinity values are more extreme, diversity values are lower and the assemblages are dominated by one or two species.
Resumo:
An Accelerator Mass Spectrometry (AMS) 14C dated multiparameter event stratigraphy is developed for the Aegean Sea on the basis of highly resolved (centimeter to subcentimeter) multiproxy data collected from four late glacial to Holocene sediment cores. We quantify the degree of proportionality and synchroneity of sediment accumulation in these cores and use this framework to optimize the confidence levels in regional marine, radiocarbon-based chronostratigraphies. The applicability of the framework to published, lower-resolution records from the Aegean Sea is assessed. Next this is extended into the wider eastern Mediterranean, using new and previously published high-resolution data from the northern Levantine and Adriatic cores. We determine that the magnitude of uncertainties in the intercore comparison of AMS 14C datings based on planktonic foraminifera in the eastern Mediterranean is of the order of ±240 years (2 SE). These uncertainties are attributed to synsedimentary and postsedimentary processes that affect the materials dated. This study also offers a background age control that allows for vital refinements to radiocarbon-based chronostratigraphy in the eastern Mediterranean, with the potential for similar frameworks to be developed for any other well-studied region.