152 resultados para Dutos Enterrados


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to provide the first biomonitoring integrating biomarkers and bioaccumulation data in São Paulo coast, Brazil and, for this purpose, a battery of biomarkers of defense mechanisms was analyzed and linked to contaminants' body burden in a weigh-of-evidence approach. The brown mussel Perna perna was selected to be transplanted from a farming area (Caraguatatuba) to four possibly polluted sites: Engenho D'Agua, DTCS (Dutos e Terminais do Centro-Oeste de São Paulo) oil terminal (Sao Sebastiao zone), Palmas Island, and Itaipu (It; Santos Bay zone). After 3 months of exposure in each season, mussels were recollected and the cytochrome P4501A (CYP1A)- and CYP3A-like activities, glutathione-S-transferase and antioxidants enzymes (catalase, glutathione peroxidase, and glutathione reductase) were analyzed in gills. The concentrations of polycyclic aromatic hydrocarbons, linear alkylbenzenes, and nonessential metals (Cr, Cd, Pb, and Hg) in whole tissue were also analyzed and data were linked to biomarkers' responses by multivariate analysis (principal component analysisfactor analysis). A representation of estimated factor scores was performed to confirm the factor descriptions and to characterize the studied stations. Biomarkers exhibited most significant alterations all year long in mussels transplanted to It, located at Santos Bay zone, where bioaccumulation of organic and inorganic compounds was detected. This integrated approach using transplanted mussels showed satisfactory results, pointing out differences between sites, seasons, and critical areas, which could be related to land-based contaminants' sources. The influence of natural factors and other contaminants (e.g., pharmaceuticals) on biomarkers' responses are also discussed. (C) 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multiphase flow occurrence in the oil and gas industry is common throughout fluid path, production, transportation and refining. The multiphase flow is defined as flow simultaneously composed of two or more phases with different properties and immiscible. An important computational tool for the design, planning and optimization production systems is multiphase flow simulation in pipelines and porous media, usually made by multiphase flow commercial simulators. The main purpose of the multiphase flow simulators is predicting pressure and temperature at any point at the production system. This work proposes the development of a multiphase flow simulator able to predict the dynamic pressure and temperature gradient in vertical, directional and horizontal wells. The prediction of pressure and temperature profiles was made by numerical integration using marching algorithm with empirical correlations and mechanistic model to predict pressure gradient. The development of this tool involved set of routines implemented through software programming Embarcadero C++ Builder® 2010 version, which allowed the creation of executable file compatible with Microsoft Windows® operating systems. The simulator validation was conduct by computational experiments and comparison the results with the PIPESIM®. In general, the developed simulator achieved excellent results compared with those obtained by PIPESIM and can be used as a tool to assist production systems development