348 resultados para Ductile


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tungsten/copper composites are commonly used for electrical and thermal objectives like heat sinks and lectrical conductors, propitiating an excellent thermal and electrical conductivity. These properties are dependents of the composition, crystallite size and production process. The high energy milling of the powder of W-Cu produces an dispersion high and homogenization levels with crystallite size of W very small in the ductile Cu phase. This work discusses the effect of the HEM in preparation of the W-25Cu composite powders. Three techniques of powder preparation were utilized: milling the dry with powder of thick Cu, milling the dry with powder of fine Cu and milling the wet with powder of thick Cu. The form, size and composition of the particles of the powders milled were observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) was used to analyse the phases, lattice parameters, size and microstrain of the crystallite. The analyse of the crystalline structure of the W-25Cu powders milled made by Rietveld Method suggests the partial solid solubility of the constituent elements of the Cu in lattice of the W. This analyse shows too that the HEM produces the reduction high on the crystallite size and the increase in the lattice strain of both phases, this is more intense in the phase W

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hard metals are the composite developed in 1923 by Karl Schröter, with wide application because high hardness, wear resistance and toughness. It is compound by a brittle phase WC and a ductile phase Co. Mechanical properties of hardmetals are strongly dependent on the microstructure of the WC Co, and additionally affected by the microstructure of WC powders before sintering. An important feature is that the toughness and the hardness increase simultaneously with the refining of WC. Therefore, development of nanostructured WC Co hardmetal has been extensively studied. There are many methods to manufacture WC-Co hard metals, including spraying conversion process, co-precipitation, displacement reaction process, mechanochemical synthesis and high energy ball milling. High energy ball milling is a simple and efficient way of manufacturing the fine powder with nanostructure. In this process, the continuous impacts on the powders promote pronounced changes and the brittle phase is refined until nanometric scale, bring into ductile matrix, and this ductile phase is deformed, re-welded and hardened. The goal of this work was investigate the effects of highenergy milling time in the micro structural changes in the WC-Co particulate composite, particularly in the refinement of the crystallite size and lattice strain. The starting powders were WC (average particle size D50 0.87 μm) supplied by Wolfram, Berglau-u. Hutten - GMBH and Co (average particle size D50 0.93 μm) supplied by H.C.Starck. Mixing 90% WC and 10% Co in planetary ball milling at 2, 10, 20, 50, 70, 100 and 150 hours, BPR 15:1, 400 rpm. The starting powders and the milled particulate composite samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to identify phases and morphology. The crystallite size and lattice strain were measured by Rietveld s method. This procedure allowed obtaining more precise information about the influence of each one in the microstructure. The results show that high energy milling is efficient manufacturing process of WC-Co composite, and the milling time have great influence in the microstructure of the final particles, crushing and dispersing the finely WC nanometric order in the Co particles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O corte de materiais por disco abrasivo é um dos processos que apresentam as melhores características de economia, eficiência e rapidez sendo muito utilizado no meio industrial. Fatores como porcentagens e homogeneidade da mistura dos componentes, tamanho, forma (abrasividade), tenacidade e dureza dos grãos abrasivos, tipos de ligantes e de abrasivos, velocidade de corte e velocidade de mergulho influenciam na segurança, no desempenho e comportamento da operação. Este trabalho apresenta um estudo sobre a influência da dureza dos discos abrasivos no desempenho do processo de corte em operações do tipo remoção a seco. O aumento da dureza dos discos propiciou um aumento da força tangencial de corte e da relação G, devido à mais forte ligação entre o grão e o ligante no compósito. Os resultados mostram que a dureza dos discos abrasivos afeta a economia, pois influencia na vida útil dos discos abrasivos em termos de números de cortes proporcionados; a produtividade, pois está relacionada com o número de trocas de discos desgastados; os esforços necessários para a operação, pois estão relacionados com as forças tangenciais de corte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The studied region, named Forquilha and localized in northwestern Central Ceará domain (northern portion of Borborema Province), presents a lithostratigraphic framework constituted by paleoproterozoic metaplutonics, metasedimentary sequences and neoproterozoic granitoids. The metasedimentary rocks of Ceará group occupy most part of the area. This group is subdivided in two distinct units: Canindé and Independência. Canindé unit is represented basically by biotite paragneisses and muscovite paragneisses, with minor metabasic rocks (amphibolite lens). Independência sequence is composed by garnetiferous paragneisses, sillimanite-garnet-quartz-muscovite schists and quartz-muscovite schists, pure or muscovite quartzites and rare marbles. At least three ductile deformation events were recognized in both units of Ceará group, named D1, D2 and D3. The former one is interpreted as related to a low angle tangential tectonics which mass transport is southward. D2 event is marked by the development of close/isoclinal folds with a N-S oriented axis. Refolding patterns generated by F1 and F2 superposition are found in several places. The latest event (D3) corresponds to a transcurrent tectonics, which led to development of mega-folds and several shear zones, under a transpressional regime. The mapped shear zones are Humberto Monte (ZCHM), Poço Cercado (ZCPC) and Forquilha (ZCF). Digital image processing of enhanced Landsat 7-ETM+ satellite images, combined with field data, demonstrate that these penetrative structures are associated with positive and negative geomorphologic patterns, distributed in linear and curvilinear arrangements with tonal banding, corresponding to the ductile fabric and to crests. Diverse color composites were tested and RGB-531 and RGB-752 provided the best results for lineament analysis of the most prominent shear zones. Spatial filtering techniques (3x3 and 5x5 filters) were also used and the application of Prewitt filters generated the best products. The integrated analysis of morphological and textural aspects from filtered images, variation of tonalities related to the distribution of geologic units in color composites and the superposition over a digital elevation model, contributed to a characterization of the structural framework of the study area. Kinematic compatibility of ZCHM, ZCPC, ZCF shear zones, as well as Sobral-Pedro II (ZCSPII) shear zone, situated to the west of the study area, was one of the goal of this work. Two of these shear zones (ZCHM, ZCPC) display sinistral movements, while the others (ZCSPII, ZCF) exhibit dextral kinematics. 40Ar/39Ar ages obtained in this thesis for ZCSPII and ZCPC, associated with other 40Ar/39Ar data of adjacent areas, indicate that all these shear zones are related to Brasiliano orogeny. The trend of the structures, the opposite shear senses and the similar metamorphic conditions are fitted in a model based on the development of conjugate shear zones in an unconfined transpression area. A WNW-ESE bulk shortening direction is infered. The geometry and kinematic of the studied structures suggest that shortening was largely accommodated by lateral extrusion, with only minor amounts of vertical stretch

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis encompasses the integration of geological, geophysical, and seismological data in the east part of the Potiguar basin, northeastern Brazil. The northeastern region is located in South American passive margin, which exhibits important areas that present neotectonic activity. The definition of the chronology of events, geometry of structures generated by these events, and definition of which structures have been reactivated is a necessary task in the region. The aims of this thesis are the following: (1) to identify the geometry and kinematics of neotectonic faults in the east part of the Potiguar basin; (2) to date the tectonic events related to these structures and related them to paleoseismicity in the region; (3) to present evolutional models that could explain evolution of Neogene structures; (4) and to investigate the origin of the reactivation process, mainly the type of related structure associated with faulting. The main type of data used comprised structural field data, well and resistivity data, remote sensing imagery, chronology of sediments, morphotectonic analysis, x-ray analysis, seismological and aeromagnetic data. Paleostress analysis indicates that at least two tectonic stress fields occurred in the study area: NSoriented compression and EW-oriented extension from the late Campanian to the early Miocene and EW-oriented compression and NS-oriented extension from the early Miocene to the Holocene. These stress fields reactivated NE-SW- and NW-SE-trending faults. Both set of faults exhibit right-lateral strike-slip kinematics, associated with a minor normal component. It was possible to determine the en echelon geometry of the Samambaia fault, which is ~63 km long, 13 km deep, presents NE-SW trend and strong dip to NW. Sedimentfilled faults in granite rocks yielded Optically Stimulated Luminescence (OSL) and Single-Aliquot Regeneration (SAR) ages at 8.000 - 9.000, 11.000 - 15.000, 16.000 - 24.000, 37.000 - 45.500, 53.609 - 67.959 e 83.000 - 84.000 yr BP. The analysis of the ductile fabric in the João Câmara area indicate that the regional foliation is NE-SW-oriented (032o - 042o), which coincides with the orientation of the epicenters and Si-rich veins. The collective evidence points to reactivation of preexisting structures. Paleoseismological data suggest paleoseismic activity much higher than the one indicated by the short historical and instrumental record

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the tectonic-stratigraphic evolution of the Transitional Sequence in the Sergipe Sub-basin (the southern segment of the Sergipe-Alagoas Basin, Northeast Brazil), deposited in the time interval of the upper Alagoas/Aptian stage. Sequence boundaries and higher order internal sequences were identified, as well as the structures that affect or control its deposition. This integrated approach aimed to characterize the geodynamic setting and processes active during deposition of the Transitional Sequence, and its relations with the evolutionary tectonic stages recognized in the East Brazilian Margin basins. This subject addresses more general questions discussed in the literature, regarding the evolution from the Rift to the Drift stages, the expression and significance of the breakup unconformity, the relationships between sedimentation and tectonics at extensional settings, as well as the control on subsidence processes during this time interval. The tectonic-stratigraphic analysis of the Transitional Sequence was based on seismic sections and well logs, distributed along the Sergipe Sub-basin (SBSE). Geoseismic sections and seismic facies analysis, stratigraphic profiles and sections, were compiled through the main structural blocks of this sub-basin. These products support the depositional and tectonic-stratigraphic evolutionary models built for this sequence. The structural analysis highlighted similarities in deformation styles and kinematics during deposition of the Rift and Transitional sequences, pointing to continuing lithospheric extensional processes along a NW trend (X strain axis) until the end of deposition of the latter sequence was finished by the end of late Aptian. The late stage of extension/rifting was marked by (i) continuous (or as pulses) fault activity along the basin, controling subsidence and creation of depositional space, thereby characterizing upper crustal thinning and (ii) sagstyle deposition of the Transitional Sequence at a larger scale, reflecting the ductile stretching and thinnning of lower and sub crustal layers combined with an increasing importance of the thermal subsidence regime. Besides the late increments of rift tectonics, the Transitional Sequence is also affected by reactivation of the border faults of SBSE, during and after deposition of the Riachuelo Formation (lower section of the Transgressive Marine Sequence, of Albian age). It is possible that this reactivation reflects (through stress propagation along the newlycreated continental margin) the rifting processes still active further north, between the Alagoas Sub-basin and the Pernambuco-Paraíba Basin. The evaporitic beds of the Transitional Sequence contributed to the development of post-rift structures related to halokinesis and the continental margin collapse, affecting strata of the overlying marine sequences during the Middle Albian to the Maastrichtian, or even the Paleogene time interval. The stratigraphic analysis evidenced 5 depositional sequences of higher order, whose vertical succession indicates an upward increase of the base level, marked by deposition of continental siliciclastic systems overlain by lagunar-evaporitic and restricted marine systems, indicating that the Transitional Sequence was deposited during relative increase of the eustatic sea level. At a 2nd order cycle, the Transitional Sequence may represent the initial deposition of a Transgressive Systems Tract, whose passage to a Marine Transgressive Sequence would also be marked by the drowning of the depositional systems. At a 3rd order cycle, the sequence boundary corresponds to a local unconformity that laterally grades to a widespread correlative conformity. This boundary surface corresponds to a breakup unconformity , being equivalent to the Pre-Albian Unconformity at the SBSE and contrasting with the outstanding Pre-upper Alagoas Unconformity at the base of the Transitional Sequence; the latter is alternatively referred, in the literature, as the breakup unconformity. This Thesis supports the Pre-Albian Unconformity as marker of a major change in the (Rift-Drift) depositional and tectonic setting at SBSE, with equivalent but also diachronous boundary surfaces in other basins of the Atlantic margin. The Pre-upper Alagoas Unconformity developed due to astenosphere uplift (heating under high lithospheric extension rates) and post-dates the last major fault pulse and subsequent extensive block erosion. Later on, the number and net slip of active faults significantly decrease. At deep to ultra deep water basin segments, seaward-dipping reflectors (SDRs) are unconformably overlain by the seismic horizons correlated to the Transitional Sequence. The SDRs volcanic rocks overly (at least in part) continental crust and are tentatively ascribed to melting by adiabatic decompression of the rising astenospheric mantle. Even though being a major feature of SBSE (and possibly of other basins), the Pre-upper Alagoas Unconformity do not correspond to the end of lithospheric extension processes and beginning of seafloor spreading, as shown by the crustal-scale extensional structures that post-date the Transitional Sequence. Based on this whole context, deposition of the Transitional Sequence is better placed at a late interval of the Rift Stage, with the advance of an epicontinental sea over a crustal segment still undergoing extension. Along this segment, sedimentation was controled by a combination of thermal and mechanical subsidence. In continuation, the creation of oceanic lithosphere led to a decline in the mechanical subsidence component, extension was transferred to the mesoceanic ridge and the newly-formed continental margin (and the corresponding Marine Sequence) began to be controlled exclusively by the thermal subsidence component. Classical concepts, multidisciplinary data and new architectural and evolutionary crustal models can be reconciled and better understood under these lines

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the sedimentological/stratigraphic and structural evolution of the sedimentary rocks that occur in the NW continental border of the Potiguar Basin. These rocks are well exposed along coastal cliffs between the localities of Lagoa do Mato and Icapuí, Ceará State (NE Brazil). The sedimentological/stratigraphic study involved, at the outcrop scale, detailed facies descriptions, profile mapping of the vertical succession of different beds, and columnar sections displaying inferred lateral relationships. The approach was complemented by granulometric and petrographic analyses, including the characterization of heavy mineral assemblages. The data set allowed to recognize two kinds of lithological units, a carbonate one of very restricted occurrence at the base of the cliffs, and three younger, distinct siliciclastic units, that predominate along the cliffs, in vertical and lateral extent. The carbonate rocks were correlated to the late Cretaceous Jandaíra Formation, which is covered by the siliciclastic Barreiras Formation. The Barreiras Formation occurs in two distinct structural settings, the usual one with nondeformed, subhorizontal strata, or as tilted beds, affected by strong deformation. Two lithofacies were recognized, vertically arranged or in fault contacts. The lower facies is characterized by silty-argillaceous sandstones with low-angle cross bedding; the upper facies comprises medium to coarse grained sandstones, with conglomeratic layers. The Tibau Formation (medium to coarse-grained sandstones with argillite intercalations) occurs at the NW side of the studied area, laterally interlayered with the Barreiras Formation. Eolic sediments correlated to the Potengi Formation overly the former units, either displaying an angular unconformity, or simply an erosional contact (stratigraphic unconformity). Outstanding structural features, identified in the Barreiras Formation, led to characterize a neocenozoic stress field, which generated faults and folds and/or reactivated older structures in the subjacent late cretaceous (to paleogene, in the offshore basin) section. The structures recognized in the Barreiras Formation comprise two distinct assemblages, namely a main extensional deformation between the localities of Ponta Grossa and Redonda, and a contractional style (succeeded by oblique extensional structures) at Vila Nova. In the first case, the structural assemblage is dominated by N-S (N±20°Az) steep to gently-dipping extensional faults, displaying a domino-style or listric geometry with associated roll-over structures. This deformation pattern is explained by an E-W/WNW extension, contemporaneous with deposition of the upper facies of the Barreiras Formation, during the time interval Miocene to Pleistocene. Strong rotation of blocks and faults generated low-angle distensional faults and, locally, subvertical bedding, allowing to estimate very high strain states, with extension estimates varying between 40% up to 200%. Numerous detachment zones, parallel to bedding, help to acommodate this intense deformation. The detachment surfaces and a large number of faults display mesoscopic features analoguous to the ones of ductile shear zones, with development of S-C fabrics, shear bands, sigmoidal clasts and others, pointing to a hydroplastic deformation regime in these cases. Local occurrences of the Jandaíra limestone are controled by extensional faults that exhume the pre-Barreiras section, including an earlier event with N-S extension. Finally, WNWtrending extensional shear zones and faults are compatible with the Holocene stress field along the present continental margin. In the Vila Nova region, close to Icapuí, gentle normal folds with fold hinges shallowly pluging to SSW affect the lower facies of the Barreiras Formation, displaying an incipient dissolution cleavage associated with an extension lineation at high rake (a S>L fabric). Deposition of the upper facies siliciclastics is controlled by pull-apart graben structures, bordered by N-NE-trending sinistral-normal shear zones and faults, characterizing an structural inversion. Microstructures are compatible with tectonic deformation of the sedimentary pile, burried at shallow depths. The observed features point to high pore fluid pressures during deformation of the sediments, producing hydroplastic structures through mechanisms of granular flow. Such structures are overprinted by microfractures and microfaults (an essentially brittle regime), tracking the change to microfracturing and frictional shear mechanisms accompanying progressive dewatering and sediment lithification. Correlation of the structures observed at the surface with those present at depth was tested through geophysical data (Ground Penetrating Radar, seismics and a magnetic map). EW and NE-trending lineaments are observed in the magnetic map. The seismic sections display several examples of positive flower structures which affect the base of the cretaceous sediments; at higher stratigraphic levels, normal components/slips are compatible with the negative structural inversion characterized at the surface. Such correlations assisted in proposing a structural model compatible with the regional tectonic framework. The strong neogenepleistocene deformation is necessarily propagated in the subsurface, affecting the late cretaceous section (Açu and Jandaíra formations), wich host the hydrocarbon reservoirs in this portion of the Potiguar Basin. The proposed structural model is related to the dextral transcurrent/transform deformation along the Equatorial Margin, associated with transpressive terminations of E-W fault zones, or at their intersections with NE-trending lineaments, such as the Ponta Grossa-Fazenda Belém one (the LPGFB, itself controlled by a Brasiliano-age strike-slip shear zone). In a first step (and possibly during the late Cretaceous to Paleogene), this lineament was activated under a sinistral transpressional regime (antithetic to the main dextral deformation in the E-W zones), giving way to the folds in the lower facies of the Barreiras Formation, as well as the positive flower structures mapped through the seismic sections, at depth. This stage was succeeded (or was penecontemporaneous) by the extensional structures related to a (also sinistral) transtensional movement stage, associated to volcanism (Macau, Messejana) and thermal doming processes during the Neogene-Pleistocene time interval. This structural model has direct implications to hydrocarbon exploration and exploitation activities at this sector of the Potiguar Basin and its offshore continuation. The structure of the reservoirs at depth (Açu Formation sandstones of the post-rift section) may be controlled (or at least, strongly influenced) by the deformation geometry and kinematics characterized at the surface. In addition, the deformation event recognized in the Barreiras Formation has an age close to the one postulated for the oil maturation and migration in the basin, between the Oligocene to the Miocene. In this way, the described structural cenario represents a valid model to understand the conditions of hydrocarbon transport and acummulation through space openings, trap formation and destruction. This model is potentially applicable to the NW region of the Potiguar Basin and other sectors with a similar structural setting, along the brazilian Equatorial Atlantic Margin

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation presents a study on crustal seismic anisotropy in Cascavel - CE. The earthquake data employed here are from the Seismological Laboratory at Universidade Federal do Rio Grande do Norte (UFRN) and were colected from 29 September 1997 to 05 march 1998 using six three-component digital seismographic stations. In general, the cause of the observed seismic anisotropy in many regions of the world is interpreted in terms of fluid-filled stress aligned microcracks in the rockmass (EDA). In other words, the polarisation direction of the faster shear-wave splitting is parallel to SHmax. However, other researches on seismic anisotropy carried out in NE Brazil have shown a remarkable consistency of the faster shear-wave polarisation direction with the direction of the Precambrian fabric. The present work is another case study that is used to investigate this issue. In order to map the Precambrian fabric we used aeromagnetic data, since the study area is mostly covered with sediments (up to 50m thick) and in-situ field mapping would be very difficult to be carried out. According to the results from the present research, the observations of the faster shear-wave polarisation directions in two seismographic stations in Cascavel region are best explained in the framework of EDA. For the remaining two stations, the observed anisotropy may have two interpretions: (i) - 90_ flips of the direction of polarisation of the faster shear-wave, since that the event-to-station ray path would be through the fracture zone and hence would travel under a higher pore pressure and (ii) - the observed seismic anisotropy would agree with the direction on the ductile Precambrian fabric

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation deals with sedimentological and structural framework of the siliciclastic rock of the Serra do Martins Formation (FSM) in the Portalegre, Martins and Santana plateau, located to the south of Potiguar Basin, in the southwest and central Rio Grande do Norte state. This formation, regarded as of Oligo-Miocene age based on intrusive relations of the Miocene Macau volcanics, has a still disputable age due to the lack of appropriate bio and/or chronostratigraphic markers. The FSSM deposits crop out along 650 to 750 m high plateau, as a remanescent sedimentary cover directly overlying topographically uplifted pre-cambrian crystalline rocks. During the last decades, these deposits were interpreted according to a Tertiary paleoclimatic evolutionary model, associated to pedogenetic processes. The sedimentological characterization of the FSM was done through a detailed study of its facies, petrography and diagenetic features. The facies study was based on description of field relations, textures and structures, the piling up of the strata and their lateral variations. The FSM was deposited by an anastomosing to coarse-meandering fluvial system, including deposits of lag, cannel-fill, ouver-bank and flood plain. The petrographic composition of the sediments, coupled to their facies and paleocurrent directions, suggest a rather distal sourcearea, to the south of the present plateau. The diagenetic study identified an incipient grain mechanical compaction, pronounced dissolution of the framework, matrix and/or cement components, intense precipitation of kaolinite, silic and, eventually, iron oxides, besides mechanical infiltration of the clays. Most of these events, regarded in the literature as associated to near-surface conditions (eo or telodiagenesis), indicate the FSM sediments were never deeply buried. Topographic relations along longitudinal and transversal sections reaching the Potiguar Basin to the north identified regional dips that allow to discuss stratigraphic correlations between the FSM and the basin formations. The sedimentological features of the different units and the intrusive relations of the Macau volcanics were also considered in these correlations,which support the Oligo-Miocene age previously accepted for the FSM. Concerning the tectonic framework of the FSM, this work investigated the pre-cambrian to cretaceous heritage and the cenozoic deformation, allowing the recognition of pre-, sin and post-FSM structures. The crystalline basement, belonging to the Seridó Belt, displays NE and WNW foliation trends related to the Brasiliano-age ductile shear zones. In this terrain, brittle-ductile and brittle NE- and NW-trending structures, associated with extensional joints filled with pegmatites and quartz veins, are related to an E-W compression by the end of Brasiliano Cycle. The E-W joints and NE-trending fractures were reactivated by N-S to N-S to NW extension during late Jurassic to Cretaceous times, controlling the emplacement of the Rio Ceará-Mirim basic dyke swarm and the opening of the Potiguar rift basin

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes brittle deformation and seismicity in the Castanhão Dam region, Ceará State, Brazil. This reservoir will include a hidroeletric power plant and will store about 6,7 billions m3 of water. Five main litostratigraphic unit were identified in the region: gneissic-migmatitic basement, metavolcanosedimentary sequence, granitoid plutons of Brasiliano age, Mesozoic basaltic dike swarm, and Cenozoic fluvial terraces of the Jaguaribe river. The region has experienced several faulting events that occurred at different crustal levels. Faults formed at depths less than about 12 km present left-lateral movement and are associated with epidote and quartz infillings. Faults formed at depths less than 7 km are mainly strike-slip present cataclastic rocks, fault breccia and gouge. Both fault groups form mainly NE-trendind lineaments and represent reactivation of ductile shear zones or new formed faults that cut across existing structures. Seismically-induced liquefaction fractures take place in Cenozoic terraces and indicate paleoearthquakes that may have reached at leat 6,8 MS. In short, this work indicate that the level of paleoseismicity is much greater than one observed in the instrumental record. Several faults are favourably oriented for reactivation and induced seismicity should be expected after the Castanhão Dam impoudment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Araripe Basin is located over Precambrian terrains of the Borborema Province, being part of Northeast Brazil inner basins. Its origin is related to the fragmentation of the Gondwana supercontinent and consequently opening of South Atlantic during early Cretaceous. The basin has a sedimentary infill encompassing four distinct evolution stages, comprising Paleozoic syneclisis, pre-rift, rift and post-rift. The target of this study comprises the post-rift section of the basin focusing deformational styles which affect evaporates from Ipubi Member of the Santana Formation, which is composed by gypsum and anidrite layers interbedded with shales. These units occur widespread across the basin. In the central part of the basin, near Nova Olinda-Santana do Cariri, evaporites are affected by an essentialy brittle deformation tipified by fibrous gypsum filled fractures, cutting massive layers of gypsum and anidrite. Veins with variable orientations and dips are observed in the region distributed over three main populations: i) a dominant NWSE with shallow to moderate NE dipping population, consisting of gypsum filled veins in which fibers are normal to vein walls; i) NE-SW veins with moderate SE dips containing subhorizontal growth fibers; and iii) N-S veins with shallow E-W dips with fibers oblique to vein walls. In the west portion of the basin, near Trindade-Ipubi-Araripina towns, evaporate layers are dominantly constituted by gypsum/anidrite finely stratified, showing a minor density of veins. These layers are affected by a unique style of deformation, more ductile, typified by gentle to open horizontal normal folding with several tens of meters length and with double plunging NW-SE or NE-SW hinges, configuring domic features. In detail, gypsum/anidrite laminae are affected by metre to decimeter scale close to tight folding, usually kinked, with broken hinges, locally turning into box folds. Veins show NE-SW main directions with shallow NE dips, growth fibers are parallel to vein walls, constituting slickenfibers. This region is marked by faults that affect Araripina Formation with NW-SE, NE-SW and E-W directions. The main structural styles and general orientations of structures which affected the post-rift section of Araripe Basin yielded important kinematic information analysis which led us to infer a E-W to NE-SW extension direction to the northeastern part of the Basin, whereas in the southeastern part, extension occurred in N-S direction. Thus, it was possible to determine a regional kinematic setting, through this analysis, characterizing a NE-SW to ENE-WSW system for the post-rift section, which is compatible with the tension settings for the Sout American Plate since Albian. Local variations at the fluid pressure linked (or not) to sedimentary overload variation define local tension settings. This way, at the northeastern portion of the basin, the post-rift deformation was governed by a setting which σ 1 is sub-horizontal trending NE-SW and, σ 3 is sub-vertical, emphasizing a reverse fault situation. At the southwestern portion however there was characterized a strike slip fault setting, featuring σ 1 trending ENEWSW and σ3 trending NNW-SSE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final stage of Brasiliano/Pan-African orogeny in the Borborema Province is marked by widespread plutonic magmatism. The Serra da Macambira Pluton is an example of such plutonism in Seridó Belt, northeastern Borborema Province, and it is here subject of geological, petrographic, textural, geochemical and petrogenetic studies. The pluton is located in the State of Rio Grande do Norte, intrusive into Paleoproterozoic orthogneisses of the Caicó Complex and Neoproterozoic metassupracrustal rocks of the Seridó Group. Based upon intrusion/inclusion field relationships, mineralogy and texture, the rocks are classified as follows: intermediate enclaves (quartz-bearing monzonite and biotite-bearing tonalite), porphyritic monzogranite, equigranular syenogranite to monzogranite, and late granite and pegmatite dykes. Porphyritic granites and quartz-bearing monzonites represent mingling formed by the injection of an intermediate magma into a granitic one, which had already started crystallization. Both rocks are slightly older than the equigranular granites. Quartz-bearing monzonite has K-feldspar, plagioclase, biotite, hornblende and few quartz, meanwhile biotite-bearing tonalite are rich in quartz, poor in K-feldspar and hornblende is absent. Porphyritic and equigranular granites display mainly biotite and rare hornblende, myrmekite and pertitic textures, and zoned plagioclase pointing out to the relevance of fractional crystallization during magma evolution. Such granites have Rare Earth Elements (REE) pattern with negative Eu anomaly and light REE enrichment when compared to heavy REE. They are slight metaluminous to slight peraluminous, following a high-K calc-alkaline path. Petrogenesis started with 27,5% partial melting of Paleoproterozoic continental crust, generating an acid hydrous liquid, leaving a granulitic residue with orthopyroxene, plagioclase (An40-50), K-feldspar, quartz, epidote, magnetite, ilmenite, apatite and zircon. The liquid evolved mainly by fractional crystallization (10-25%) of plagioclase (An20), biotite and hornblende during the first stages of magmatic evolution. Granitic dykes are hololeucocratic with granophyric texture, indicating hypabissal crystallization and REE patterns similar to A-Type granites. Preserved igneous textures, absence or weak imprint of ductile tectonics, association with mafic to intermediate enclaves and alignment of samples according to monzonitic (high-K calcalkaline) series all indicate post-collisional to post-orogenic complexes as described in the literature. Such interpretation is supported by trace element discrimination diagrams that place the Serra da Macambira pluton as late-orogenic, probably reflecting the vanishing stages of the exhumation and collapse of the Brasiliano/Pan-African orogen.