954 resultados para Drosophila saltans
Resumo:
Are larger and/or more symmetrical Drosophila melanogaster (Diptera, Drosophilidae) males more successful in matings in nature? Sexual selection in Drosophila melanogaster, related to body size and fluctuating asymmetry in wing length and number of sex comb teeth in males, was tested in natural conditions. Males collected in copula were significantly larger than those collected as a single, while no difference in mean number of sex comb teeth between copulating and single males was observed. On the other hand, single males had greater asymmetry both for wing length and number of sex comb teeth than their mating counterparts. It looks like that symmetry of these bilateral traits also may play a role in sexual selection in this dipteran species in nature.
Resumo:
Intracellular signaling in insect olfactory receptor neurons remains unclear, with both metabotropic and ionotropic components being discussed. Here, we investigated the role of heterotrimeric Go and Gi proteins using a combined behavioral, in vivo and in vitro approach. Specifically, we show that inhibiting Go in sensory neurons by pertussis toxin leads to behavioral deficits. We heterologously expressed the olfactory receptor dOr22a in human embryonic kidney cells (HEK293T). Stimulation with an odor led to calcium influx, which was amplified via calcium release from intracellular stores. Subsequent experiments indicated that the signaling was mediated by the Gβγ subunits of the heterotrimeric Go/i proteins. Finally, using in vivo calcium imaging, we show that Go and Gi contribute to odor responses both for the fast (phasic) as for the slow (tonic) response component. We propose a transduction cascade model involving several parallel processes, in which the metabotropic component is activated by Go and Gi , and uses Gβγ.
Resumo:
Although Drosophila systemic immunity is extensively studied, little is known about the fly's intestine-specific responses to bacterial infection. Global gene expression analysis of Drosophila intestinal tissue to oral infection with the Gram-negative bacterium Erwinia carotovora revealed that immune responses in the gut are regulated by the Imd and JAK-STAT pathways, but not the Toll pathway. Ingestion of bacteria had a dramatic impact on the physiology of the gut that included modulation of stress response and increased stem cell proliferation and epithelial renewal. Our data suggest that gut homeostasis is maintained through a balance between cell damage due to the collateral effects of bacteria killing and epithelial repair by stem cell division. The Drosophila gut provides a powerful model to study the integration of stress and immunity with pathways associated with stem cell control, and this study should prove to be a useful resource for such further studies.
Resumo:
Drosophila caxiuana sp. nov., Drosophila subgenus, is described and illustrated. This new species was collected in the Amazonian Biome (Caquajó river, Portel, Pará, Brazil) and is an atypical species to the group due the unusual morphology of the male terminalia.
Resumo:
The invasive spotted-wing Drosophila (Diptera, Drosophilidae) has been found in the city of São Paulo (Brazil). Drosophila suzukii (Matsumura, 1931), the cherry fly or spotted-wing Drosophila, a pest species from the Oriental and southeastern Palaearctic regions belonging to the melanogaster group, invaded the Nearctic and western countries of the Palaearctic regions late last decade (2008) and, more recently (2013), the southern Brazilian states of Rio Grande do Sul and Santa Catarina. Early in 2014 it was reared from blueberries produced in São Joaquim, state of Santa Catarina, that were bought at a São Paulo city grocery store. Despite being a cold-adapted species, after having arrived to the southeastern state of São Paulo, this invasive fly will probably expand its territory to other Brazilian states and South American countries through trade of cultivated soft skin small fruits, such as blueberries and strawberries, as well as naturally through the use of small wild fruits as breeding sites.
Resumo:
ABSTRACT In several arthropod groups, male genitalia is the most important feature for species identification, especially in cryptic species. Cryptic species are very common in the Drosophila genus, and the Neotropical Drosophila willistoni species group is a good example. This group currently includes 24 species divided into three subgroups: alagitans, bocainensis and willistoni. There are six sibling species in the willistoni subgroup – D. willistoni, D. insularis, D. tropicalis, D. equinoxialis, D. pavlovskiana and D. paulistorum, which is a species complex composed of six semispecies – Amazonian, Andean-Brazilian, Centroamerican, Interior, Orinocan and Transitional. The objective of this study was to characterize male genitalia of the willistoni subgroup, including the D. paulistorum species complex, using scanning electron microscopy and light microscopy. We also tried to contribute to the identification of these cryptic species and to add some comments about evolutionary history, based on male genitalia characters. Despite being cryptic species, some differences were found among the siblings, including the Drosophila paulistorum semispecies.
Resumo:
ABSTRACT The population dynamics of a species tends to change from the core to the periphery of its distribution. Therefore, one could expect peripheral populations to be subject to a higher level of stress than more central populations (the center–periphery hypothesis) and consequently should present a higher level of fluctuating asymmetry. To test these predictions we study asymmetry in wing shape of five populations of Drosophila antonietae collected throughout the distribution of the species using fluctuating asymmetry as a proxy for developmental instability. More specifically, we addressed the following questions: (1) what types of asymmetry occur in populations of D. antonietae? (2) Does the level of fluctuating asymmetry vary among populations? (3) Does peripheral populations have a higher fluctuating asymmetry level than central populations? We used 12 anatomical landmarks to quantify patterns of asymmetry in wing shape in five populations of D. antonietae within the framework of geometric morphometrics. Net asymmetry – a composite measure of directional asymmetry + fluctuating asymmetry – varied significantly among populations. However, once net asymmetry of each population is decomposed into directional asymmetry and fluctuating asymmetry, most of the variation in asymmetry was explained by directional asymmetry alone, suggesting that populations of D. antonietae have the same magnitude of fluctuating asymmetry throughout the geographical distribution of the species. We hypothesize that larval development in rotting cladodes might play an important role in explaining our results. In addition, our study underscores the importance of understanding the interplay between the biology of a species and its geographical patterns of asymmetry.
Resumo:
ABSTRACT In early March 2015, three males and two females of one unknown species of Drosophila were collected from a compost pile and some garbage cans in the west region of the city of São Paulo, state of São Paulo, Brazil. Morphologically it is easily identified by the presence of the following conspicuous features: a brownish dorsal stripe along pleura, an entirely iridescent silvery-whitish frons when seen directly from the front, and a row of cuneiform setae on anteroventral side of femur of foreleg; the former two traits being more evident in males. The species was easily reared in a modified banana-agar medium and two isofemale lines were established allowing to obtain mitotic cells showing a diploid chromosome number of 2n = 8. Based both on morphological and chromosomal features, in addition to the geographical distribution, we concluded that the unknown flies belong to Drosophila nasuta Lamb, 1914, a tropical species of the nasuta subgroup of the Drosophila immigrans species group. Photomicrographs of male imagines, terminalia, mitotic and meiotic metaphase plates, as well as of female mitotic metaphase, are included.
Resumo:
The olfactory system is an attractive model to study the genetic mechanisms underlying evolution of the nervous system. This sensory system mediates the detection and behavioural responses to an enormous diversity of volatile chemicals in the environment and displays rapid evolution, as species acquire, modify and discard olfactory receptors and circuits to adapt to new olfactory stimuli. Drosophilids provide an attractive model to study these processes. The availability of 12 sequenced genomes of Drosophila species occupying diverse ecological niches provides a rich resource for genomic analyses. Moreover, one of these species, Drosophila melanogaster, is amenable to a powerful combination of genetic and electrophysiological analyses. D. melanogaster has two distinct families of olfactory receptors to detect odours, the well-characterised Odorant Receptors (ORs) and the recently identified lonotropic Receptors (IRs). In my thesis, I have provided new insights into the genetic mechanisms underlying olfactory system evolution through three distinct, but interrelated projects. First, I performed a comparative genomic analysis of the IR repertoire in 12 sequenced Drosophila species, which has revealed that the olfactory IRs are highly conserved across species. By contrast, a large fraction of IRs that are not expressed in the olfactory system - and which may be gustatory receptors - are much more variable in sequence and gene copy number. Second, to identify ligands for IR expressing olfactory sensory neurons, I have performed an electrophysiological screen in D. melanogaster using a panel of over 160 odours. I found that the IRs respond to a number of amines, aldehydes and acids, contrasting with the chemical specificity of the OR repertoire, which is mainly tuned to esters, alcohols and ketones. Finally, the identification of ligands for IRs in this species allowed me to investigate in detail the molecular and functional evolution of a tandem array of IRs, IR75a/IR75b/IR75c, in D. sechellia. This species is endemic to the Seychelles archipelago and highly specialised to breed on the fruits of Morinda citrifolia, which is repulsive and toxic for other Drosophila species. These studies led me to discover that receptor loss, changes in receptor specificity and changes in receptor expression have likely played an important role during the evolution of these IRs in D. sechellia. These changes may explain, in part, the unique chemical ecology of this species. - Le système olfactif est un excellent modèle pour étudier les mécanismes génétiques impliqués dans l'étude de l'évolution du système nerveux. Ce système sensoriel permet la détection de nombreux composés volatils présents dans l'environnement et est à la base des réponses comportementales. Il est propre à chaque espèce et évolue rapidement en modifiant ou en éliminant des récepteurs et leurs circuits olfactifs correspondants pour s'adapter à de nouvelles odeurs. Pour étudier le système olfactif et son évolution, nous avons décidé d'utiliser la drosophile comme modèle. Le séquençage complet de 12 souches de drosophiles habitant différentes niches écologiques permet une analyse génomique conséquente. De plus, l'une de ces espèces Drosophila melanogaster permet la combinaison d'analyses génétiques et électrophysiologiques. En effet, D. melanogaster possède 2 familles distinctes de récepteurs olfactifs qui permettent la détection d'odeurs: les récepteurs olfactifs (ORs) étant les mieux caractérisés et les récepteurs ionotropiques (IRs), plus récemment identifiés. Au cours de ma thèse, j'ai apporté des nouvelles connaissances qui m'ont permis de mieux comprendre les mécanismes génétiques à la base de l'évolution du système olfactif au travers de trois projets différents, mais interdépendants. Premièrement, j'ai réalisé une analyse génomique comparative de l'ensemble des IRs dans les 12 souches de drosophiles séquencées jusqu'à présent. Ceci a montré que les récepteurs olfactifs IRs sont hautement conservés parmi l'ensemble de ces espèces. Au contraire, une grande partie des IRs qui ne sont pas exprimés dans le système olfactif, et qui semblent être des récepteurs gustatifs, sont beaucoup plus variables dans leur séquence et dans le nombre de copie de gènes. Deuxièmement, pour identifier les ligands des récepteurs IRs exprimés par les neurones sensoriels olfactifs, j'ai réalisé une étude électrophysiologique chez D. melanogaster e η testant l'effet de plus de 160 composés chimiques sur les IRs. J'ai trouvé que les IRs répondent à un nombre d'amines, d'aldéhydes et d'acides, contrairement aux récepteurs olfactifs ORs qui eux répondent principalement aux esthers, alcools et cétones. Finalement, l'identification de ligands pour les IRs dans ces espèces m'a permis d'étudier en détail l'évolution fonctionnelle et moléculaire des IR75a/IR75b/IR75c dans D. sechellia. Cette espèce est endémique de l'archipel des Seychelles et se nourrit spécifiquement du fruit Morinda citrifolia qui est répulsif et toxique pour d'autres souches de drosophiles. Ces études m'ont poussé à découvrir que, la perte de IR75a, le changement dans la spécificité de IR75b ainsi que le changement dans l'expression de IR75c ont probablement joué un rôle important dans l'évolution des IRs chez D. sechellia. Ces changements peuvent expliquer, en partie, l'écologie chimique propre à cette espèce. Résumé français large public Le système olfactif permet aux animaux de détecter des milliers de molécules odorantes, les aidant ainsi à trouver de la nourriture, à distinguer si elle est fraîche ou avariée, à trouver des partenaires sexuels, ainsi qu'à éviter les prédateurs. Selon l'environnement et le mode de vie des espèces, le système olfactif doit détecter des odeurs très diverses ; en effet, un moustique qui recherche du sang humain pour se nourrir doit détecter des odeurs bien différentes d'une abeille qui recherche des fleurs. Dans ma thèse, j'ai essayé de comprendre comment les systèmes olfactifs d'une espèce évoluent pour s'adapter aux exigences induites par son environnement. Un très bon modèle pour étudier cela est la drosophile dont les différentes espèces se nichent dans des habitats très divers. Pour ce faire, j'ai étudié les récepteurs olfactifs de différentes espèces de la drosophile. Ces récepteurs sont des protéines qui se lient à des odeurs spécifiques. Lorsqu'ils se lient, ils activent un neurone qui envoie un signal électrique au cerveau. Ce signal est ensuite traité par ce dernier qui indique à la mouche si l'odeur est attractive ou répulsive. J'ai identifié les récepteurs olfactifs de plusieurs espèces de drosophile et étudié s'il y avait des différences entre elles. La plupart des récepteurs sont similaires entre les espèces, cependant dans l'une d'entre elles, certains récepteurs sont différents. Ce fait est particulièrement intéressant car cette espèce de drosophile se nourrit de fruits que les autres espèces n'apprécient pas. Comme nous ne savons pas quels récepteurs se lient à quelles odeurs, j'ai testé un grand nombre de composants odorants. Ceci m'a permis de constater que, effectivement, certains changements produits dans ces récepteurs expliquent pourquoi cette espèce aime particulièrement ces fruits. En outre, mes résultats contribuent à mieux comprendre les changements génétiques qui sont impliqués dans l'évolution du système olfactif.
Resumo:
Inbreeding adversely affects life history traits as well as various other fitness-related traits, but its effect on cognitive traits remains largely unexplored, despite their importance to fitness of many animals under natural conditions. We studied the effects of inbreeding on aversive learning (avoidance of an odour previously associated with mechanical shock) in multiple inbred lines of Drosophila melanogaster derived from a natural population through up to 12 generations of sib mating. Whereas the strongly inbred lines after 12 generations of inbreeding (0.75<F<0.93) consistently showed reduced egg-to-adult viability (on average by 28%), the reduction in learning performance varied among assays (average=18% reduction), being most pronounced for intermediate conditioning intensity. Furthermore, moderately inbred lines (F=0.38) showed no detectable decline in learning performance, but still had reduced egg-to-adult viability, which indicates that overall inbreeding effects on learning are mild. Learning performance varied among strongly inbred lines, indicating the presence of segregating variance for learning in the base population. However, the learning performance of some inbred lines matched that of outbred flies, supporting the dominance rather than the overdominance model of inbreeding depression for this trait. Across the inbred lines, learning performance was positively correlated with the egg-to-adult viability. This positive genetic correlation contradicts a trade-off observed in previous selection experiments and suggests that much of the genetic variation for learning is owing to pleiotropic effects of genes affecting functions related to survival. These results suggest that genetic variation that affects learning specifically (rather than pleiotropically through general physiological condition) is either low or mostly due to alleles with additive (semi-dominant) effects.
Resumo:
The life history of the fruit fly (Drosophila melanogaster) is well understood, but fitness components are rarely measured by following single individuals over their lifetime, thereby limiting insights into lifetime reproductive success, reproductive senescence and post-reproductive lifespan. Moreover, most studies have examined long-established laboratory strains rather than freshly caught individuals and may thus be confounded by adaptation to laboratory culture, inbreeding or mutation accumulation. Here, we have followed the life histories of individual females from three recently caught, non-laboratory-adapted wild populations of D. melanogaster. Populations varied in a number of life-history traits, including ovariole number, fecundity, hatchability and lifespan. To describe individual patterns of age-specific fecundity, we developed a new model that allowed us to distinguish four phases during a female's life: a phase of reproductive maturation, followed by a period of linear and then exponential decline in fecundity and, finally, a post-ovipository period. Individual females exhibited clear-cut fecundity peaks, which contrasts with previous analyses, and post-peak levels of fecundity declined independently of how long females lived. Notably, females had a pronounced post-reproductive lifespan, which on average made up 40% of total lifespan. Post-reproductive lifespan did not differ among populations and was not correlated with reproductive fitness components, supporting the hypothesis that this period is a highly variable, random 'add-on' at the end of reproductive life rather than a correlate of selection on reproductive fitness. Most life-history traits were positively correlated, a pattern that might be due to genotype by environment interactions when wild flies are brought into a novel laboratory environment but that is unlikely explained by inbreeding or positive mutational covariance caused by mutation accumulation.
Resumo:
Hunting live prey is risky and thought to require specialized adaptations. Therefore, observations of predatory cannibalism in otherwise non-carnivorous animals raise questions about its function, adaptive significance and evolutionary potential. Here we document predatory cannibalism on larger conspecifics in Drosophila melanogaster larvae and address its evolutionary significance. We found that under crowded laboratory conditions younger larvae regularly attack and consume 'wandering-stage' conspecifics, forming aggregations mediated by chemical cues from the attacked victim. Nutrition gained this way can be significant: an exclusively cannibalistic diet was sufficient for normal development from eggs to fertile adults. Cannibalistic diet also induced plasticity of larval mouth parts. Finally, during 118 generations of experimental evolution, replicated populations maintained under larval malnutrition evolved enhanced propensity towards cannibalism. These results suggest that, at least under laboratory conditions, predation on conspecifics in Drosophila is a functional, adaptive behaviour, which can rapidly evolve in response to nutritional conditions.
Resumo:
INTRODUCTION The chemical senses smell and taste, detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus-coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity that are transmitted to and interpreted in central brain regions. Drosophila provides an attractive model to study chemosensory coding, because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, virtually all of the peripheral chemosensory neurons are easily accessible for physiological analysis, as they are exposed on the surface of sensory organs in specialized sensory hairs called sensilla. In recent years, improvements in microscopy and instrumentation for electrode manipulation have opened up the much smaller Drosophila system to electrophysiological techniques, powerfully complementing many years of molecular genetic studies. As with most electrophysiological methods, there is probably no substitute for learning this technique directly from a laboratory in which it is already established. This protocol describes the basics of setting up the electrophysiology rig and stimulus delivery device, sample preparation, and performing and analyzing recordings of stimulus-evoked activity from Drosophila taste sensilla.
Resumo:
The wing of the fruit fly, Drosophila melanogaster, with its simple, two-dimensional structure, is a model organ well suited for a systems biology approach. The wing arises from an epithelial sac referred to as the wing imaginal disc, which undergoes a phase of massive growth and concomitant patterning during larval stages. The Decapentaplegic (Dpp) morphogen plays a central role in wing formation with its ability to co-coordinately regulate patterning and growth. Here, we asked whether the Dpp signaling activity scales, i.e. expands proportionally, with the growing wing imaginal disc. Using new methods for spatial and temporal quantification of Dpp activity and its scaling properties, we found that the Dpp response scales with the size of the growing tissue. Notably, scaling is not perfect at all positions in the field and the scaling of target gene domains is ensured specifically where they define vein positions. We also found that the target gene domains are not defined at constant concentration thresholds of the downstream Dpp activity gradients P-Mad and Brinker. Most interestingly, Pentagone, an important secreted feedback regulator of the pathway, plays a central role in scaling and acts as an expander of the Dpp gradient during disc growth.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.