955 resultados para Drill, hydraulic
Resumo:
Following the global stringent legislations regulating the wastes generated from the drilling process of oil exploration and production activities, the management of hazardous drill cuttings has become one of the pressing needs confronting the petroleum industry. Most of the prevalent treatment techniques adopted by oil companies are extremely expensive and/or the treated product has to be landfilled without any potential end-use; thereby rendering these solutions unsustainable. The technique of stabilisation/solidification is being investigated in this research to treat drill cuttings prior to landfilling or for potential re-use in construction products. Two case studies were explored namely North Sea and Red Sea. Given the known difficulties with stabilising/solidifying oils and chlorides, this research made use of model drill cutting mixes based on typical drill cutting from the two case studies, which contained 4.2% and 10.95% average concentrations of hydrocarbons; and 2.03% and 2.13% of chlorides, by weight respectively. A number of different binders, including a range of conventional viz. Portland cement (PC) as well as less-conventional viz. zeolite, or waste binders viz. cement kiln dust (CKD), fly ash and compost were tested to assess their ability to treat the North Sea and Red Sea model drill cuttings. The dry binder content by weight was 10%, 20% and 30%. In addition, raw drill cuttings from one of the North Sea offshore rigs were stabilised/solidified using 30% PC. The characteristics of the final stabilised/solidified product were finally compared to those of thermally treated cuttings. The effectiveness of the treatment using the different binder systems was compared in the light of the aforementioned two contaminants only. A set of physical tests (unconfined compressive strength (UCS)), chemical tests (NRA leachability) and micro-structural examinations (using scanning electron microscopy (SEM), and X-ray diffraction (XRD)) were used to evaluate the relative performance of the different binder mixes in treating the drill cuttings. The results showed that the observed UCS covered a wide range of values indicating various feasible end-use scenarios for the treated cuttings within the construction industry. The teachability results showed the reduction of the model drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the 30% and 20% binders for chloride concentrations, and (b) by the 20% and 30% of compost-PC and CKD-PC binders for the Red Sea cuttings. The 20% and 30% compost-PC and CKD-PC binders successfully reduced the leached oil concentration of the North Sea cuttings to inert levels. Copyright 2007, Society of Petroleum Engineers.
Resumo:
Hydrodynamic properties of the surface vortex have been investigated. Based on the Navier-Stokes equations, three sets of the new formulations for the tangential velocity distributions are derived, and verified against the experimental measurements in the literature. It is shown that one modification greatly improves the agreement with the experimental data. Physical model experiments were carried out to study the intake vortex related to the Xiluodu hydropower project. The velocity fields were measured using the Particle Tracking Velocimetry (PTV) technique. The proposed equation for tangential velocity distribution is applied to the Xiluodu project with the solid boundary being considered by the method of images. Good agreement has been observed between the formula prediction and the experimental observation. © 2010 Publishing House for Journal of Hydrodynamics.
Resumo:
Previous research has shown that hydraulic systems offer potentially the lightest and smallest regenerative braking technology for heavy goods vehicles. This paper takes the most practical embodiment of a hydraulic system for an articulated urban delivery vehicle and investigates the best specification for the various components, based on a simulated stop-start cycle. The potential energy saving is quantified. © 2011 IEEE.
Resumo:
Dynamic centrifuge modelling has been carried out at Cambridge since the late 1970s. Over this period, three different mechanical earthquake actuators were developed. In this paper the development of a new servo-hydraulic earthquake actuator is described. The basic design principles are explained along with the need to carry out these designs to match the existing services and systems of the 35 year old Turner beam centrifuge at Cambridge. In addition, some of the features of the Turner beam centrifuge are exploited in the design of this new earthquake actuator. The paper also explains the mechanical fabrication of the actuator and the control systems that were developed in order to generate real earthquake motions. Finally, the performance of this new servo-hydraulic earthquake actuator is presented and assessed based on a wide range of earthquake input motions.
Resumo:
The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston-cylinder and drag-based microdevices. © 2010 IOP Publishing Ltd.
Resumo:
Future microrobotic applications require actuators that can generate a high actuation force in a limited volume. Up to now, little research has been performed on the development of pneumatic or hydraulic microactuators, although they offer great prospects in achieving high force densities. In addition, large actuation strokes and high actuation speeds can be achieved by these actuators. This paper describes a fabrication process for piston-cylinder pneumatic and hydraulic actuators based on etching techniques, UV-definable polymers, and low-temperature bonding. Prototype actuators with a piston area of 0.15 mm2 have been fabricated in order to validate the production process. These actuators achieve actuation forces of more than 0.1 N and strokes of 750 μm using pressurized air or water as driving fluid. © 2009 IEEE.
Resumo:
Future microrobotic applications require actuators that can generate a high actuation force and stroke in a limited volume. Up to now, little research has been performed on the development of pneumatic and hydraulic microactuators, although they offer great prospects in achieving high force densities. One of the main technological barriers in the development of these actuators is the fabrication of powerful seals with low leakage. This paper presents a seal technology for linear fluidic microactuators based on ferrofluids. A design and simulation method for these seals has been developed and validated by measurements on miniaturized actuator prototypes. These actuators have an outside diameter of 2 mm, a length of 13 mm and have been tested using both pressurized air and water. Our current actuator prototypes are able to operate at pressures up to 1.6 MPa without leakage. At these pressures, forces up to 0.65 N have been achieved. The stroke of the actuators is 10 mm. © 2009 Elsevier B.V. All rights reserved.
Resumo:
To improve the force output of microactuators, this work focuses on actuators driven by pressurized gasses or liquids. Despite their well known ability to generate high actuation forces, hydraulic actuators remain uncommon in microsystems. This is both due to the difficulty of fabricating these microactuators with the existing micromachining processes and to the lack of adequate microseals. This paper describes how to overcome these limitations with a combination of anisotropic micromachining, UV definable polymers and low temperature bonding. The functionality of these actuators is proven by extensive measurements which showed that actuation forces of 0.1 N can be achieved for actuators with an active cross-section of 0.15 mm2. This is an order of magnitude higher than what is reported for classic MEMS actuators of similar size.
Resumo:
Recent research revealed that microactuators driven by pressurized fluids are able to generate high power and force densities at microscale. One of the main technological barriers in the development of these actuators is the fabrication low friction seals. This paper presents a novel scalable seal technology, which resists the actuation pressure relying on a combination of a clearance seal and a surface tension seal. This approach allows to seal pressures of more than 800 kPa without leakage. The seal is tested on an actuator with a bore of 0.8 mm2 and a length of 13 mm, which was able to generate forces up to 0.32 N. © 2008 Springer-Verlag.
Resumo:
In order to improve the power density of microactuators, recent research focuses on the applicability of fluidic power at microscale. One of the reasons that hydraulic actuators are still uncommon in micro system technology is due to the difficulty of fabricating powerful microseals. This paper presents two seal technologies that are suitable for sealing small-scale hydraulic actuators. Measurements on prototype actuators show that force densities up to 0,45 N/mm2 (0,025 N/mm3) and work densities up to 0,2 mJ/mm3 can easily be achieved with the developed seal technology. These characteristics can still be improved as the maximum driving pressures of the actuators have not yet been determined. © 2005 IEEE.